German Researchers Directly Measure Climate Change Effects Using TERENO Lysimeters
In Germany, scientists are measuring the effects of tomorrow’s climate change with a vast network of 144 large lysimeters.
In 2008, the Karlsruhe Institute of Technology began to develop a climate feedback monitoring strategy at the Ammer catchment in Southern Bavaria. In 2009, the Research Centre Juelich Institute of Agrosphere, in partnership with the Helmholtz-Network TERENO (Terrestrial Environmental Observatories) began conducting experiments in an expanded approach.
Throughout Germany, they set up a network of 144 large lysimeters with soil columns from various climatic conditions at sites where climate change may have the largest impact. In order to directly observe the effects of simulated climate change, soil columns were taken from higher altitudes with lower temperatures to sites at a lower altitude with higher temperatures and vice versa. Extreme events such as heavy rain or intense drought were also experimentally simulated.
Georg von Unold, whose company (formerly UMS, now METER) built and installed the lysimeters comments on why the project is so important. “From a scientific perspective, we accept changes for whatever reason they may happen, but it is our responsibility to carefully monitor and predict how these changes cause floods, droughts, and disease. We need to be prepared to react if and before they affect us.”
How Big Are the Lysimeters?
Georg says that each lysimeter holds approximately 3,000 kilograms of soil and has to be moved under compaction control with specialized truck techniques. He adds, “The goal of these lysimeters is to measure energy balance, water flux and nutrition transport, emission of greenhouse gases, biodiversity, and solute leaching into the groundwater. Researchers measure the conditions of water balance in the natural soil surrounding the lysimeters, and then apply those same conditions inside the lysimeters with suction ceramic cups that lay across the bottom of the lysimeter. These cups both inject and take out water to mimic natural or artificial conditions.”
Researchers monitor the new climate situation with microenvironment monitors and count the various grass species to see which types become dominant and which might disappear. They use water content sensors and tensiometers to monitor hydraulic conditions inside the lysimeters. The systems also use a newly-designed system to inject CO2 into the atmosphere around the plants and soil to study increased carbon effects. Georg says, “We developed, in cooperation with the HBLFA Raumberg Gumpenstein, a new, fast-responding CO2 enrichment system to study CO2 from plants and soil respiration. We analyze gases like CO2, oxygen, and methane. The chambers are rotated from one lysimeter to another, working 24 hours, 7 days a week. Each lysimeter is exposed only for a few minutes so as not to change the natural environment.”
Next week: Read about the intense precision required to move the soil-filled lysimeters, how problems are prevented, and how the data is used by scientists worldwide.
Download the “Researcher’s complete guide to soil moisture”—>
Get more information on applied environmental research in our