Webinar: Why Water Content Can’t Tell You Everything You Need to Know
Water content can leave you in the dark
Everybody measures soil water content because it’s easy. But if you’re only measuring water content, you may be blind to what your plants are really experiencing.
Soil moisture is more complex than estimating how much water is used by vegetation and how much needs to be replaced. If you’re thinking about it that way, you’re only seeing half the picture. You’re assuming you know what the right level of water should be—and that’s extremely difficult using only a water content sensor.
Get it right every time
Water content is only one side of a critical two-sided coin. To understand when to water or plant water stress, you need to measure both water content and water potential.
In this 30-minute webinar, METER soil physicist, Dr. Colin Campbell, discusses how and why scientists combine both types of sensors for more accurate insights. Discover:
- Why the “right water level” is different for every soil type
- Why soil surveys aren’t sufficient to type your soil for full and refill points
- Why you can’t know what a water content “percentage” means to growing plants
- How assumptions made when only measuring water content can reduce crop yield and quality
- Water potential fundamentals
- How water potential sensors measure “plant comfort” like a thermometer
- Why water potential is the only accurate way to measure drought stress
- Why visual cues happen too late to prevent plant-water problems
- Case studies that show why both water content and water potential are necessary to understand the condition of soil water in your experiment or crop
WATCH IT NOW—>
Presenter
Dr. Colin Campbell has been a research scientist at METER for 20 years following his Ph.D. at Texas A&M University in Soil Physics. He is currently serving as Vice President of METER Environment. He is also adjunct faculty with the Dept. of Crop and Soil Sciences at Washington State University where he co-teaches Environmental Biophysics, a class he took over from his father, Gaylon, nearly 20 years ago. Dr. Campbell’s early research focused on field-scale measurements of CO2 and water vapor flux but has shifted toward moisture and heat flow instrumentation for the soil-plant-atmosphere continuum.