Skip to content

Posts by Colin Campbell

Data collection: 8 best practices to avoid costly surprises

Every researcher’s goal is to obtain usable field data for the entire duration of a study. A good data set is one a scientist can use to draw conclusions or learn something about the behavior of environmental factors in a particular application. However, as many researchers have painfully discovered, getting good data is not as simple as installing sensors, leaving them in the field, and returning to find an accurate record. Those who don’t plan ahead, check the data often, and troubleshoot regularly often come back to find unpleasant surprises such as unplugged data logger cables, soil moisture sensor cables damaged by rodents, or worse: that they don’t have enough data to interpret their results. Fortunately, most data collection mishaps are avoidable with quality equipment, some careful forethought, and a small amount of preparation.

ZL6 Data Logger in a wheat field

Before selecting a site, scientists should clearly define their goals for gathering data.

Make no mistake, it will cost you

Below are some common mistakes people make when designing a study that cost them time and money and may prevent their data from being usable.

  • Site characterization: Not enough is known about the site, its variability, or other influential environmental factors that guide data interpretation
  • Sensor location: Sensors are installed in a location that doesn’t address the goals of the study (i.e., in soils, both the geographic location of the sensors and the location in the soil profile must be applicable to the research question)
  • Sensor installation: Sensors are not installed correctly, causing inaccurate readings
  • Data collection: Sensors and logger are not protected, and data are not checked regularly to maintain a continuous and accurate data record
  • Data dissemination: Data cannot be understood or replicated by other scientists

When designing a study, use the following best practices to simplify data collection and avoid oversights that keep data from being usable and ultimately, publishable.

Read more…

Download the “Researcher’s complete guide to soil moisture”—>

Download the “Researcher’s complete guide to water potential”—>

Download the “Researcher’s complete guide to SDI-12″—>

5 ways site disturbance impacts your data—and what to do about it

Lies we tell ourselves about site disturbance

When it comes to measuring soil moisture, site disturbance is inevitable. We may placate ourselves with the idea that soil sensors will tell us something about soil water even if a large amount of soil at the site has been disturbed. Or we might think it doesn’t matter if soil properties are changed around the sensor because the needles are inserted into undisturbed soil.

Rolling farm fields

The key to reducing the impact of site disturbance on soil moisture data is to control the scale of the disturbance.

The fact is that site disturbance does matter, and there are ways to reduce its impact on soil moisture data. Below is an exploration of site disturbance and how researchers can adjust their installation techniques to fight uncertainty in their data.

Non-disturbance methods don’t measure up—yet

During a soil moisture sensor installation, it’s important to generate the least amount of soil disturbance possible in order to obtain a representative measurement. Non-disturbance methods do exist, such as satellite, ground-penetrating radar, and COSMOS. However, these methods face challenges that make them impractical as a single approach to water content. The satellite has a large footprint, but generally measures the top 5-10 cm of the soil, and the resolution and measurement frequency is low. Ground-penetrating radar has great resolution, but it’s expensive, and data interpretation is difficult when a lower boundary depth is unknown. COSMOS is a ground-based, non-invasive neutron method that measures continuously and reaches deeper than a satellite over an area up to 800 meters in diameter. But it is cost-prohibitive in many applications and sensitive to both vegetation and soil, so researchers have to separate the two signals. These methods aren’t yet ready to displace soil moisture sensors, but they work well when used in tandem with the ground truth data that soil moisture sensors can provide.

Read more

Get more info on applied environmental research in our

Download the “Researcher’s complete guide to soil moisture”—>

Download the “Researcher’s complete guide to water potential”—>

Double Ring vs. SATURO: Two Infiltrometers Go Head to Head

The SATURO and the double-ring infiltrometer are both ring infiltrometers that infiltrate water from the surface into soils. Overall, they compare fairly well (see comparison). The main difference is how they deal with three-dimensional flow in the Kfs calculation. The SATURO uses the multiple-ponded head analysis approach to get a more direct estimation of alpha, which is used to determine how the soil pulls the water laterally. The double-ring infiltrometer uses a larger outer ring to act as a buffer from three-dimensional flow. This requires more water, and literature suggests that it doesn’t perform well. Also, with a double-ring infiltrometer, there is still a need to estimate alpha in the equations. This is typically done from a look-up table based on soil type and often results in error.

SATURO Infiltrometer which uses multiple-ponded head analysis approach

The SATURO is an automated infiltrometer which uses the multiple-ponded head analysis approach.

How do SATURO readings compare to double-ring infiltrometer readings?

We compared the SATURO with a 6-inch (15.24 cm) inner ring diameter against a double-ring infiltrometer with a 6-inch (15.24 cm) inner ring diameter and an outer ring with a 12-inch (30.48 cm) diameter.

Hydrology 301: What a Hydraulic Conductivity Curve Tells You & More

Hydraulic conductivity is the ability of a porous medium (soil for instance) to transmit water in saturated or nearly saturated conditions. It’s dependent on several factors: size distribution, roughness, tortuosity, shape, and degree of interconnection of water-conducting pores. A hydraulic conductivity curve tells you, at a given water potential, the ability of the soil to conduct water.

Researcher measuring with the HYPROP balance

One factor that affects hydraulic conductivity is how strong the structure is in the soil you’re measuring.

For example, as the soil dries, what is the ability of water to go from the top of a sample [or soil layer in the field] to the bottom. These curves are used in modeling to illustrate or predict what will happen to water moving in a soil system during fluctuating moisture conditions. Researchers can combine hydraulic conductivity data from two laboratory instruments, the KSAT and the HYPROP, to produce a full hydraulic conductivity curve (Figure 1).

Hydraulic conductivity curve

Figure 1. Example of hydraulic conductivity curves for three different soil types. The curves go from field saturation on the right to unsaturated hydraulic conductivity on the left.  They illustrate the difference between a well-structured clayey soil to a poorly structured clayey soil and the importance of structure to hydraulic conductivity especially at, or near, saturation.

In Hydrology 301, Leo Rivera, Research Scientist at METER, discusses hydraulic conductivity and the advantages and disadvantages of methods used to measure it.

Watch the webinar below.

 

Get more info on applied environmental research in our

Download the “Researcher’s complete guide to water potential”—>

Download the “Researcher’s complete guide to soil moisture”—>

Lab versus in situ soil water characteristic curves—a comparison

The HYPROP and WP4C enable fast, accurate soil moisture release curves (soil water characteristic curves-SWCCs), but lab measurements have some limitations: sample throughput limits the number of curves that can be produced, and curves generated in a laboratory do not represent their in situ behavior. Lab-produced soil water retention curves can be paired with information from in situ moisture release curves for deeper insight into real-world variability.

Tractor moving soil around

Soil water characteristic curves help determine soil type, soil hydraulic properties, and mechanical performance and stability

Moisture release curves in the field? Yes, it’s possible.

Colocating water potential sensors and soil moisture sensors in situ add many more moisture release curves to a researcher’s knowledge base. And, since it is primarily the in-place performance of unsaturated soils that is the chief concern to geotechnical engineers and irrigation scientists, adding in situ measurements to lab-produced curves would be ideal.

In this brief 20-minute webinar, Dr. Colin Campbell, METER research scientist, summarizes a recent paper given at the Pan American Conference of Unsaturated Soils. The paper, “Comparing in situ soil water characteristic curves to those generated in the lab” by Campbell et al. (2018), illustrates how well in situ generated SWCCs using the TEROS 21 calibrated matric potential sensor and METER’s GS3 water content sensor compare to those created in the lab.

Watch the webinar below:

&nbsp

Download the “Researcher’s complete guide to water potential”—>

Download the “Researcher’s complete guide to soil moisture”—>

Lab vs. field instruments—when to use both

Whether researchers measure soil hydraulic properties in the lab or in the field, they’re only getting part of the picture. Laboratory systems are highly accurate due to controlled conditions, but lab measurements don’t take into account site variability such as roots, cracks, or wormholes that might affect soil hydrology. In addition, when researchers take a sample from the field to the lab, they often compress soil macropores during the sampling process, altering the hydraulic properties of the soil.

Tree roots with moss covering them

Roots, cracks, and wormholes all affect soil hydrology

Field experiments help researchers understand variability and real-time conditions, but they have the opposite set of problems. The field is an uncontrolled system. Water moves through the soil profile by evaporation, plant uptake, capillary rise, or deep drainage, requiring many measurements at different depths and locations. Field researchers also have to deal with the unpredictability of the weather. Precipitation may cause a field drydown experiment to take an entire summer, whereas in the lab it takes only a week.

The big picture—supersized

Researchers who use both lab and field techniques while understanding each method’s strengths and limitations can exponentially increase their understanding of what’s happening in the soil profile. For example, in the laboratory, a researcher might use the PARIO soil texture analyzer to obtain accurate soil texture data, including a complete particle size distribution. They could then combine those data with an HYPROP-generated soil moisture release curve to understand the hydraulic properties of that soil type. If that researcher then adds high-quality field data in order to understand real-world field conditions, then suddenly they’re seeing the larger picture.

Lab and field instrument strengths and limitations

Table 1. Lab and field instrument strengths and limitations

Below is an exploration of lab versus field instrumentation and how researchers can combine these instruments for an increased understanding of their soil profile. Click the links for more in-depth information about each topic.

Particle size distribution and why it matters

Soil type and particle size analysis are the first window into the soil and its unique characteristics. Every researcher should identify the type of soil that they’re working with in order to benchmark their data.

Researcher holding a sprouting seedling in their hands

Particle size analysis defines the percentage of coarse to fine material that makes up a soil

If researchers don’t understand their soil type, they can’t make assumptions about the state of soil water based on soil moisture (i.e., if they work with plants, they won’t be able to predict whether there will be plant available water). In addition, differing soil types in the soil’s horizons may influence a researcher’s measurement selection, sensor choice, and sensor placement.

Read more

Download the “Researcher’s complete guide to soil moisture”—>

3 Insider Strategies for a More Accurate Soil Moisture Picture (part 2)

Different readings in soil moisture sensors are caused by spatial variation in water content (see part 1). These readings provide researchers with valuable information about soil texture, watering patterns, and water use. This week, learn two more strategies to keep in mind when trying to understand the varying patterns of soil moisture at your research or irrigation site.

Tree standing in a green field

In some crop studies, it may be important to account for horizontal variation.

Strategy #2: Crop Studies—Representing Variation in a Homogeneous Environment

In some research projects, it will be important to account for horizontal variation. How variable is the water content across a field? We did an experiment in which we set out a transect across a field of bare, tilled soil. Using a METER EC-5 soil moisture sensor connected to Procheck meter, we sampled water content at one-meter intervals over a 58-meter distance. The individual readings are shown in Figure 1.

Soil volumetric water content and measurement number chart

Figure 1. You can determine how many samples are necessary to characterize a homogeneous area in about an hour using an EC-5 soil moisture sensor and a ProCheck.

In this data set, the samples are not spatially correlated. The variation is apparent. The mean water content of the data set is 0.198 m3m-3. The standard deviation is 0.023 m3m-3 . The coefficient of variation is 12%. Using some simple geostatistics, we determined that three carefully placed sites would adequately represent the variation present in this very homogeneous environment. Of course, in some environments, samples will not be independent. If a semivariogram indicates that some underlying spatial factor influences soil moisture variability, you will have to consider that in your experimental design.

Forest of trees

By taking into account the major relevant sources of soil moisture variation, you can plan enough sampling locations to draw conclusions from your data.

Strategy #3: Ecology Studies—Heterogeneous Environments

On a forested hillside, horizontal variation in soil moisture will obviously be significant. Determining how many sensors to use and where to place them is not at all trivial. Stratified sampling—systematically sampling from more uniform subgroups of a heterogeneous population—may be a better way to deal with this kind of variety. The researcher classifies the site into strata (eg., forested canopy, brush, hillside, valley) and evaluates the number of samples needed to statistically represent the variation present within each stratum.

Many people allow for the variation in soil moisture values that come from the slope, orientation, vegetation, and canopy cover. Some fail to consider the important soil-level variations that come from soil type and density. By taking into account the major relevant sources of soil moisture variation, you can plan enough sampling locations to draw reasonable conclusions from your data. Choose too few locations, and you run the risk of missing the patterns that will lead to higher-level understanding. Choose too many, and not only will you be unable to afford your experiment, but you may also miss the patterns altogether as your experiment overflows with random abundance.

Image is an example of a heterogeneous research area with different slopes and vegetation

Sometimes researchers want to compare dissimilar sites.

Comparing Data from Different Sites or Strata

Comparing absolute water content numbers can give confusing results. Both measurements are volumetric water content, but 35% here vs. 15% there actually tells us very little. Was the site in sand or clay, or something in between? If conditions at the two sites are virtually identical, the comparison may make some sense. But often, researchers want to compare dissimilar sites.

Volumetric water content and depth in a chart

Figure 2. Changes in VWC with depth (convention: negative values indicate depths below soil surface) for the same time period at Site 1.

Water potential measurements determined by converting absolute volumetric water content to soil water potential using a moisture characteristic curve specific to each soil type can be used to compare results across sites. Comparing relative values—quantities of water used in centimeters for example—can also be both useful and valid.

Figure 3 below illustrates an experiment we performed in a dryland field where water content measurements were made over a growing season at 30, 60, 90, 120, and 150 cm below a wheat crop.  The graph of soil moisture data shows how water is taken up from successively deeper layers. By subtracting one profile from another and summing over the layers where change occurs (for instance, in Figure 2 above, subtract the far left line from the far-right line to see how much water was used from May 10th to August 21st), you can determine the amount of water used by the plants over a particular period.  If similar data were taken at different sites or in different strata, these relative values, in terms of quantified water use, could form the basis of solid comparison studies.

Soil water content in winter wheat

Figure 3. Soil water content in winter wheat measured at 30 cm increments

Read more about accurate soil moisture:  Can you sample the profile without a profile probe?  Find out.

Download the “Researcher’s complete guide to soil moisture”—>

Download the “Researcher’s complete guide to water potential”—>

3 Insider Strategies for a More Accurate Soil Moisture Picture (Part 1)

How Do you Know You’re Getting Accurate Soil Moisture?

Researchers and irrigators may wonder if their soil moisture sensors are accurate because probes at different locations in the same field have different water content readings. Different readings in soil moisture sensors are caused by spatial variation in water content. These readings provide researchers valuable information about soil texture, watering patterns, and water use. Here are some ideas and strategies to keep in mind when trying to understand the varying patterns of soil moisture at your research or irrigation site. Click the links for more in-depth information about accurate soil moisture.

Grapes on the vines down isles

One irrigator noticed a few sensors indicating low water content after a heavy rain that had uniformly wetted his vineyard.

Horizontal vs. Vertical Variation

It’s helpful to distinguish variation in the vertical from variation in the horizontal. Most people expect strong vertical variation due to wetting and drying patterns, soil horizonation, and compaction. Water content can vary drastically over distances of only a few centimeters, especially near the soil surface. Horizontal variation is typically less pronounced in a bare or uniformly planted field, and at a given depth, it might be quite small. But surprisingly large variations can exist, indicating isolated patches of sand or clay or differences in topography. One irrigator noticed a few sensors indicating low water content after a heavy rain that had uniformly wetted his vineyard. Knowing that sand has a low field capacity water content, he surmised (correctly) that he had found the sandy areas in the vineyard.

Researcher holding an ECHO EC-5 in front of soil

Soil moisture sensors sometimes measure unexpected things.

Unexpected Readings

Because properly installed dielectric soil moisture sensors lie in undisturbed (and therefore unanalyzed) soil, they sometimes measure unexpected things. One researcher buried a probe in what appeared to be a very dry location and was startled to measure 25 to 30% volumetric water content. Those readings made the soil appear saturated, but obviously, it wasn’t. She dug down to the sensor and found a pocket of clay. As she discovered, it is impossible to get much information from an absolute water content measurement without knowing what type of soil the sensor is in.

Since we expect variation, how do we account for it? How many probes are needed to adequately characterize the water content in an application or experiment? There is no simple answer to this question. The answer will be affected by your site, your goals, and how you plan to analyze your data. Here are some things you might consider as you plan.

Sun rising behind a wheat field

If a field will be irrigated as a unit, it should be monitored as a unit at one representative spot.

Strategy #1: Irrigation—Use Soil Moisture as an Indicator

What information do you have when you know a field’s volumetric water content? That number independently tells an irrigator very little. Soil moisture can be used like a gauge to show when a field is full and when it needs to be refilled, but the “full” and “empty” are only meaningful in context.

The goals of irrigation are to keep root zone water within prescribed limits and to minimize deep drainage. Understanding and monitoring the vertical variation lets you correlate a real-time graph of water use data with above-ground field conditions and plant water needs. It makes sense to place probes both within and below the root zone.

By contrast, measuring horizontal variation—placing sensors at different spots in the field—is not very helpful. If a field will be irrigated as a unit, it should be monitored as a unit at one representative spot. Because there’s no way to adjust water application in specific spots, there’s no benefit to quantifying spatial variation in the horizontal. Like a float in a gas tank, a set of soil moisture sensors in the right spot will adequately represent the changing soil moisture condition of the whole field.

We recommend a single probe location in each irrigation zone with a minimum of one probe in the root zone and one probe below it. Additional probes at that site, within and below the root zone, will increase the reliability of the information for the irrigation manager, at minimal additional cost.

In two weeks: Learn two more techniques researchers use in crop studies and ecology studies to account for variability in order to obtain an accurate soil moisture picture.

Get more info on applied environmental research in our

Download the “Researcher’s complete guide to soil moisture”—>

PRI & the Power of Spectral Indices

In this brief 30-minute webinar, Dr. John Gammon, University of Alberta, teaches the basics of the Photochemical Reflectance Index (PRI).

Looking up bark into a tree canopy

He gives an introduction to the photochemical reflectance index and what it can tell researchers about xanthophyll cycle activity, carotenoid: chlorophyll pigment ratios, light-use efficiency, and plant stress. He also discusses remote sensing.

Topics include:

  • Energy distribution in a leaf
  • Leaf optical changes upon shade removal
  • Photosynthetic light response curve
  • Uses as a stress indicator
  • Temporal and spacial patterns in photoprotection
  • How does photoprotection vary with tree age?
  • Kinetics: sun vs. shade
  • Applications
  • Can it “scale”?
  • Light-use efficiency model

Watch the webinar

More canopy webinars:

Using PRI to Monitor Crop Stress

Leaf Area Index: Theory, Measurement, and Application

NDVI and PRI: Measurement, Theory, and Application

Get more info on applied environmental research in our

See the “Researcher’s complete guide to leaf area index (LAI)—>

Download the “Researcher’s complete guide to soil moisture”—>

Top Five Blog Posts in 2017

In case you missed them the first time around, here are the most popular Environmental Biophysics.org blog posts in 2017.

Soil Moisture Sensors: Why TDR vs. Capacitance May Be Missing the Point

Researcher holding a soil sensor in front of a field

Soil moisture sensor

Time Domain Reflectometry (TDR) vs. capacitance is a common question for scientists who want to measure volumetric water content (VWC) of soil, but is it the right question?  Dr. Colin S. Campbell, soil scientist, explains some of the history and technology behind TDR vs. capacitance and the most important questions scientists need to ask before investing in a sensor system. Read more

Get More From your NDVI Sensor

Looking up at tree branches from the ground

Modern technology has made it possible to sample Normalized Difference Vegetation Index (NDVI) across a range of scales both in space and in time, from satellites sampling the entire earth’s surface to handheld small sensors that measure individual plants or even leaves.  Read more

Improved Methods Save Money in Future Borehole Thermal Energy Storage Design

Image of a city with many buildings

Globally, the gap between the energy production and consumption is growing wider. To promote sustainability, University of California San Diego PhD candidate and ASCE GI Sustainability in Geotechnical Engineering committee member, Tugce Baser, Dr. John McCartney, Associate Professor, and their research team, Dr. Ning Lu, Professor at Colorado School of Mines and Dr. Yi Dong, Postdoctoral Researcher at Colorado School of Mines, are working on improving methods for borehole thermal energy storage (BTES), a system which stores solar heat in the soil during the summer months for reuse in homes during the winter. Read more

New Weather Station Technology in Africa

Happy students gathered around an ATMOS 41 weather station

Weather data, used for flight safety, disaster relief, crop and property insurance, and emergency services, contributes over $30 billion in direct value to U.S. consumers annually. Since the 1990’s in Africa, however, there’s been a consistent decline in the availability of weather observations. Read more

Electrical Conductivity of Soil as a Predictor of Plant Response

Corn stalks looking up at the sky from the ground

Plants require nutrients to grow, and if we fail to supply the proper nutrients in the proper concentrations, plant function is affected. Fertilizer in too high concentration can also affect plant function, and sometimes is fatal.  Read more

And our three most popular blogs of all time:

Estimating Relative Humidity in Soil: How to Stop Doing it Wrong

Image of a tree in the desert

Estimating the relative humidity in soil?  Most people do it wrong…every time.  Dr. Gaylon S. Campbell shares a lesson on how to correctly estimate soil relative humidity from his new book, Soil Physics with Python, which he recently co-authored with Dr. Marco Bittelli.  Read more

How to Measure Water Potential

Plants sprouting out of the sand

In the conclusion of our three-part water potential series, we discuss how to measure water potential—different methods, their strengths, and their limitations. Read more

Do the Standards for Field Capacity and Permanent Wilting Point Need to be Reexamined?

Image of rolling fields in front of mountains

We were inspired by this Freakonomics podcast, which highlights the bookThis Idea Must Die: Scientific Problems that are Blocking Progress, to come up with our own answers to the question:  Which scientific ideas are ready for retirement?  We asked scientist, Dr. Gaylon S. Campbell, which scientific idea he thinks impedes progress.  Here’s what he had to say about the standards for field capacity and permanent wilting point. Read more

Get info on applied environmental research in our

See weather sensor performance data for the ATMOS 41 weather station.

Explore which weather station is right for you.

Download the “Researcher’s complete guide to soil moisture”—>