Skip to content

Posts from the ‘Geophysics’ Category

Best of 2019: Environmental Biophysics

In case you missed them, here are our most popular educational webinars of 2019. Watch any or all of them at your convenience.

Lab vs. In Situ Water Characteristic Curves

Image of a researcher running hand across wheat

Researcher Running A Hand Across Wheat

Lab-produced soil water retention curves can be paired with information from in situ moisture release curves for deeper insight into real-world variability.

Watch it here—>

Hydrology 101: The Science Behind the SATURO Infiltrometer

Image of a fallen tree being supported off the ground by many other trees

A Forest With Fallen Trees

Dr. Gaylon S. Campbell teaches the basics of hydraulic conductivity and the science behind the SATURO automated dual head infiltrometer.

Watch it here—>

Publish More. Work Less. Introducing ZENTRA Cloud

Image of a researcher collecting information from a ZL6 data logger

Researcher is Collecting Data from the ZL6 Data Logger

METER research scientist Dr. Colin Campbell discusses how ZENTRA Cloud data management software simplifies the research process and why researchers can’t afford to live without it.

Watch it here—>

Soil Moisture 101: Need-to-Know Basics

Soil moisture is more than just knowing the amount of water in soil. Learn basic principles you need to know before deciding how to measure it.

Watch it here—>

Soil Moisture 201: Moisture Release Curves—Revealed

Image of rolling hills of farm land

Rolling Hills of Farm Land

A soil moisture release curve is a powerful tool used to predict plant water uptake, deep drainage, runoff, and more.

Watch it here—>

Soil Moisture 301: Hydraulic Conductivity—Why You Need It. How to Measure it.

Image of a researcher measuring with the HYPROP balance

Researcher measuring with the HYPROP balance

If you want to predict how water will move within your soil system, you need to understand hydraulic conductivity because it governs water flow.

Watch it here—>

Soil Moisture 102: Water Content Methods—Demystified

Image of a researcher holding a TEROS 12 in front of a field

Modern Sensing is more than just a Sensor

Dr. Colin Campbell compares measurement theory, the pros and cons of each method, and why modern sensing is about more than just the sensor.

Watch it here—>

Soil Moisture 202: Choosing the Right Water Potential Sensor

Image of a dirt plowed field being used for electrical conductivity

Electrical Conductivity

METER research scientist Leo Rivera discusses how to choose the right field water potential sensor for your application.

Watch it here—>

Water Management: Plant-Water Relations and Atmospheric Demand

Dr. Gaylon Campbell shares his newest insights and explores options for water management beyond soil moisture. Learn the why and how of scheduling irrigation using plant or atmospheric measurements. Understand canopy temperature and its role in detecting water stress in crops. Plus, discover when plant water information is necessary and which measurement(s) to use.

Watch it here—>

How to Improve Irrigation Scheduling Using Soil Moisture

Image of a crop field

Capacitance

Dr. Gaylon Campbell covers the different methods irrigators can use to schedule irrigation and the pros and cons of each.

Watch it here—>

Next up:

Soil Moisture 302: Hydraulic Conductivity—Which Instrument is Right for You?

Image of plants growing out of the sand

Leo Rivera, research scientist at METER teaches which situations require saturated or unsaturated hydraulic conductivity and the pros and cons of common methods.

Watch it here—>

Image of grapes growing off of a tree

Predictable Yields using Remote and Field Monitoring

New data sources offer tools for growers to optimize production in the field. But the task of implementing them is often difficult. Learn how data from soil and space can work together to make the job of irrigation scheduling easier.

Watch it here—>

Learn more

Download “The researcher’s complete guide to soil moisture”

Download “The researcher’s complete guide to water potential

Chalk Talk: Why is Humidity Relative?

Dr. Colin Campbell, a senior research scientist at METER Group, as well as adjunct faculty at Washington State University teaches about relative humidity.

Image of a forest with clouds and fog everywhere
Comparing RH at different research sites can be a challenge

Watch the video to find out why we use the term relative humidity and why comparing RH at different research sites can be a challenge.

 

Video transcript

Why is humidity relative?

Hi, I’m Dr. Colin Campbell. I’m a senior research scientist here at METER Group, as well as adjunct faculty up at Washington State University. And I teach a class in environmental biophysics. And today, we’re going to be talking about relative humidity. Have you ever looked at a weather report and wondered, what do they mean by the term relative? Why aren’t we talking about absolute things? And so today I’m going to talk about what is relative humidity? Well, relative humidity we’re going to define here as just hr. And hr is equal to the partial pressure of water vapor in air divided by the saturation vapor pressure or the maximum possible partial pressure of water in air as a function of temperature. So this is relative because anytime we have a partial pressure of water vapor, we’re always dividing it by the maximum possible water vapor that could be in the air at any point.

Comparing RH at different sites is a challenge

So, why would relative humidity be such a challenge for us as scientists to use in comparing different sites? I wanted to talk about that so we can focus in here on this saturation vapor pressure. Over here we have Tetens equation. This says that the saturation vapor pressure, which is a function of air temperature is equal to 0.611 kPa times the exponential of a constant “b” times the air temperature divided by another constant “c” plus the air temperature. So at any point, depending on the air temperature, we can calculate the saturation vapor pressure, and then we can put it back into this equation and get our relative humidity. There are two situations we might think about for calculating our saturation vapor pressure. The most typical is this one: where that constant “b” is 17.502 degrees C. And the constant “c” is 240.97 degrees C (the units on this are degrees C, so these will cancel). If we’re over ice, those constants will be different: “b” would be 21.87 degrees C and “c” would be 265.5 degrees C. 

So as I mentioned, relative humidity is a challenging variable to use in research because while vapor pressure (ea) (the vapor pressure of the air) is somewhat conservative across a day, the saturation vapor pressure (with respect to air temperature), this changes slowly with temperature across the day. So if we graphed temperature on one axis and the relative humidity on the other axis, we might during a typical day have a temperature range that looks somewhat like this. And even if the actual vapor pressure “ea” wasn’t changing, we’d see a relative humidity trend that looked like this: only changing because of air temperature. And because of that, if we wondered how do I compare the water in the air at one research site, for example, with the water in the air at another research site? We might be inclined to average them. But because of this trend, the average of the relative humidity at any site tends to be around 0.60 to 0.65 and therefore will be totally irrelevant in the literature. 

So we need to speak in absolutes, and in my next lecture, I’m going to go into what we can do to calculate that absolute relative humidity. If you want to know more about making measurements in the atmosphere, go to metergroup.com, look at our atmospheric instrumentation, and you can learn more from there.

Download “The researcher’s complete guide to soil moisture”

Download “The researcher’s complete guide to water potential

Chalk Talk: Intensive vs. Extensive Variables

Learn the difference between intensive and extensive variables and how they relate to soil water potential vs. soil water content in our new Chalk Talk whiteboard series. In this video series, Dr. Colin S. Campbell teaches basic principles of environmental biophysics and how they relate to measuring different parameters of the soil-plant-atmosphere continuum.

Watch the video

 

Learn more

To learn more about measuring water potential vs. water content read: Why soil moisture sensors can’t tell you everything.

Download the “Researcher’s complete guide to water potential”—>

Download the “Researcher’s complete guide to soil moisture”—>

Video transcript

Hello, my name is Colin Campbell. I’m a senior research scientist here at METER group. And I teach a class on environmental biophysics. Today I wanted to talk about something we teach in the class: the difference between extensive and intensive variables. I’d like to do this with the goal of relating it to the difference between volumetric water content and water potential. 

Here, I have a picture of a ship moving through the ice and some metal that’s been heated in a furnace. I think we would agree the ship has the highest amount of heat in it compared to this very small piece of metal. And if we placed that piece of metal onto the outside of the ship, despite the fact that there is more heat in the ship, we know the heat would not move from the high amount of heat (ship) to the low amount of heat (metal). It would actually move from the highest temperature to the lowest temperature. Why is that?

The reason is that heat moves because of temperature and not because of heat content or the amount of heat in something. Heat content defines an amount or an extent. And we generally term something that defines an extent or an amount as an extensive variable.An extensive variable depends broadly on the size of something or how much of something there is. 

This differs for temperature. Temperature doesn’t depend on size. The temperature could be the same in a very small room or a very large room, but the amount of heat or heat content in those rooms would be quite different. When we describe temperature, we talk about intensity, which is why we call these types of variables intensive variables. This is because they don’t depend on size or amount. 

Let’s talk about another example. Here’s your heating bill. Maybe it’s natural gas. What you’re paying for is the amount of heat you put into the house. But the question is, are you comfortable in the house? And from this bill, we can’t tell. Maybe you put in 200 heat units, whatever those might be. We can’t tell if that’s comfortable because we don’t know the size of the house or the type of insulation. All those things would influence whether you were comfortable. 

Alternatively, if the temperature is 71 F that’s quite comfortable. That’s equivalent to about 22 degrees Celsius. So the intensive variable, temperature, is different than the extensive variable, heat content, that tells us how much heat we put in. And that’s important because at the end of the day, that leads to cost. 

On this side, we don’t know how much we paid to keep it at 22 C because heat content doesn’t tell us anything about that. But the intensive variable temperature does tell us something about comfort. So both of these variables are critical to really understanding something about our comfort in the house. 

Now let’s talk about the natural environment. Specifically, we’re going to talk about soils. We’ll start with the extensive variable. When we talk about water in soil, the extensive variable is, of course, water content. Water content defines the amount of water. Why would we care about water content? Well, for irrigation or a water balance.

The intensive variable is called water potential. What does water potential tell us? It tells us if soil water is available and also predicts water movement. If this soil had a water content of 25% VWC and another soil was at 20% VWC, would the water move from the higher water content to the lower water content? Well, that would be like our example of the ship and the heated piece of metal. We don’t know if it would move. It may move. And if the soil on either side was exactly the same, we might presume that it would move from the higher water content to the lower water content, but we actually don’t know. Because the water content is an extensive variable, it only tells us how much there is. It won’t tell us if it will move. 

Now, if we knew that this soil water potential was -20 kPa and this soil water potential over here was -15 kPa, we would know something about where the water would move, and it would do something different than we might think. It would move from the higher water potential to the lower water potential against the gradient in water content, which is pretty interesting but nonetheless true. Water always moves from the highest water potential to the lowest water potential.

This helps us understand these variables in terms of plant comfort. We talked about the temperature being related to human comfort. We know at what temperatures we are most comfortable. With plants, we know exactly the same thing, and we always turn to the intensive variable, water potential, to define plant comfort.

For example, if we have an absolute scale like water potential for a particular plant, let’s say -15 kPa is the upper level for plant comfort, and -100 kPa is the lower level of comfort, we could keep our water potential in this range. And the plant would be happy all the time. Just like if we kept our temperature between 21 and 23 Celsius, that would be comfortable for humans. But of course, we humans are different. Some people think that temperature is warm, and some think it’s cold. And it’s the same for plants. So this isn’t a hard and fast rule. But we can’t say the same thing with water content. There’s no scale where we can say at 15% water content up to 25% water content you’ll have a happy plant That’s not true.If we know something about the soil, we can infer it. But soil is unique. And we’d have to derive this relationship between the water content and the water potential to know that. 

So why would we ever think about using water content when we measure water in the soil? One reason is it’s the most familiar to people. And it’s the simplest to understand. It’s easy to understand an amount. But more importantly, when we talk about things like how much we’re going to irrigate, we might need to put on 10 millimeters of water to make the plants happy. And we’d need to measure that. Also if we want to know the fate of the water in the system, how much precipitation and irrigation we put on versus how much is moving down through the soil into the groundwater, that also relates to an amount.  

But when we want to understand more about plant happiness or how water moves, it’s going to be this intensive variable, water potential that makes the biggest difference. And so with that, I’ll close. I’d love for you to go check out our website www.metergroup.com to learn a little bit more about these measurements in our knowledge base. And you’re also welcome to email me about this at colin.campbell@meter group.com.

Take our Soil Moisture Master Class

Six short videos teach you everything you need to know about soil water content and soil water potential—and why you should measure them together.  Plus, master the basics of soil hydraulic conductivity.

Watch it now—>

Soil Moisture 301—Hydraulic Conductivity Why you need it. How to measure it.

New Live Webinar

Hydraulic conductivity, or the ability of a soil to transmit water, is critical to understanding the complete water balance.

Researcher running hand over wheat
Soil hydraulic conductivity impacts almost every soil application.

In fact, if you’re trying to model the fate of water in your system and simply estimating parameters like conductivity, you could get orders of magnitude errors in your projections. It would be like searching in the dark for a moving target. If you want to understand how water will move across and within your soil system, you need to understand hydraulic conductivity because it governs water flow.

Get the complete soil picture

Hydraulic conductivity impacts almost every soil application: crop production, irrigation, drainage, hydrology in both urban and native lands, landfill performance, stormwater system design, aquifer recharge, runoff during flooding, soil erosion, climate models, and even soil health. In this 20-minute webinar, METER research scientist, Leo Rivera discusses how to better understand water movement through soil. Discover:

  • Saturated and unsaturated hydraulic conductivity—What are they?
  • Why you need to measure hydraulic conductivity
  • Measurement methods for the lab and the field
  • What hydraulic conductivity can tell you about the fate of water in your system

Date: August 20, 2019 at 9:00 am – 10:00 am Pacific Time

See the live webinar

REGISTER

Can’t wait for the webinar? See a comparison of common measurement methods, and decide which soil hydraulic conductivity method is right for your application. Read the article.

Download the “Researcher’s complete guide to water potential”—>

Download the “Researcher’s complete guide to soil moisture”—>

5 ways site disturbance impacts your data—and what to do about it

Lies we tell ourselves about site disturbance

When it comes to measuring soil moisture, site disturbance is inevitable. We may placate ourselves with the idea that soil sensors will tell us something about soil water even if a large amount of soil at the site has been disturbed. Or we might think it doesn’t matter if soil properties are changed around the sensor because the needles are inserted into undisturbed soil.

Rolling farm fields

The key to reducing the impact of site disturbance on soil moisture data is to control the scale of the disturbance.

The fact is that site disturbance does matter, and there are ways to reduce its impact on soil moisture data. Below is an exploration of site disturbance and how researchers can adjust their installation techniques to fight uncertainty in their data.

Non-disturbance methods don’t measure up—yet

During a soil moisture sensor installation, it’s important to generate the least amount of soil disturbance possible in order to obtain a representative measurement. Non-disturbance methods do exist, such as satellite, ground-penetrating radar, and COSMOS. However, these methods face challenges that make them impractical as a single approach to water content. The satellite has a large footprint, but generally measures the top 5-10 cm of the soil, and the resolution and measurement frequency is low. Ground-penetrating radar has great resolution, but it’s expensive, and data interpretation is difficult when a lower boundary depth is unknown. COSMOS is a ground-based, non-invasive neutron method that measures continuously and reaches deeper than a satellite over an area up to 800 meters in diameter. But it is cost-prohibitive in many applications and sensitive to both vegetation and soil, so researchers have to separate the two signals. These methods aren’t yet ready to displace soil moisture sensors, but they work well when used in tandem with the ground truth data that soil moisture sensors can provide.

Read more

Get more info on applied environmental research in our

Download the “Researcher’s complete guide to soil moisture”—>

Download the “Researcher’s complete guide to water potential”—>

Double Ring vs. SATURO: Two Infiltrometers Go Head to Head

The SATURO and the double-ring infiltrometer are both ring infiltrometers that infiltrate water from the surface into soils. Overall, they compare fairly well (see comparison). The main difference is how they deal with three-dimensional flow in the Kfs calculation. The SATURO uses the multiple-ponded head analysis approach to get a more direct estimation of alpha, which is used to determine how the soil pulls the water laterally. The double-ring infiltrometer uses a larger outer ring to act as a buffer from three-dimensional flow. This requires more water, and literature suggests that it doesn’t perform well. Also, with a double-ring infiltrometer, there is still a need to estimate alpha in the equations. This is typically done from a look-up table based on soil type and often results in error.

SATURO Infiltrometer which uses multiple-ponded head analysis approach

The SATURO is an automated infiltrometer which uses the multiple-ponded head analysis approach.

How do SATURO readings compare to double-ring infiltrometer readings?

We compared the SATURO with a 6-inch (15.24 cm) inner ring diameter against a double-ring infiltrometer with a 6-inch (15.24 cm) inner ring diameter and an outer ring with a 12-inch (30.48 cm) diameter.

Hydrology 301: What a Hydraulic Conductivity Curve Tells You & More

Hydraulic conductivity is the ability of a porous medium (soil for instance) to transmit water in saturated or nearly saturated conditions. It’s dependent on several factors: size distribution, roughness, tortuosity, shape, and degree of interconnection of water-conducting pores. A hydraulic conductivity curve tells you, at a given water potential, the ability of the soil to conduct water.

Researcher measuring with the HYPROP balance

One factor that affects hydraulic conductivity is how strong the structure is in the soil you’re measuring.

For example, as the soil dries, what is the ability of water to go from the top of a sample [or soil layer in the field] to the bottom. These curves are used in modeling to illustrate or predict what will happen to water moving in a soil system during fluctuating moisture conditions. Researchers can combine hydraulic conductivity data from two laboratory instruments, the KSAT and the HYPROP, to produce a full hydraulic conductivity curve (Figure 1).

Hydraulic conductivity curve

Figure 1. Example of hydraulic conductivity curves for three different soil types. The curves go from field saturation on the right to unsaturated hydraulic conductivity on the left.  They illustrate the difference between a well-structured clayey soil to a poorly structured clayey soil and the importance of structure to hydraulic conductivity especially at, or near, saturation.

In Hydrology 301, Leo Rivera, Research Scientist at METER, discusses hydraulic conductivity and the advantages and disadvantages of methods used to measure it.

Watch the webinar below.

 

Get more info on applied environmental research in our

Download the “Researcher’s complete guide to water potential”—>

Download the “Researcher’s complete guide to soil moisture”—>

Lab versus in situ soil water characteristic curves—a comparison

The HYPROP and WP4C enable fast, accurate soil moisture release curves (soil water characteristic curves-SWCCs), but lab measurements have some limitations: sample throughput limits the number of curves that can be produced, and curves generated in a laboratory do not represent their in situ behavior. Lab-produced soil water retention curves can be paired with information from in situ moisture release curves for deeper insight into real-world variability.

Tractor moving soil around

Soil water characteristic curves help determine soil type, soil hydraulic properties, and mechanical performance and stability

Moisture release curves in the field? Yes, it’s possible.

Colocating water potential sensors and soil moisture sensors in situ add many more moisture release curves to a researcher’s knowledge base. And, since it is primarily the in-place performance of unsaturated soils that is the chief concern to geotechnical engineers and irrigation scientists, adding in situ measurements to lab-produced curves would be ideal.

In this brief 20-minute webinar, Dr. Colin Campbell, METER research scientist, summarizes a recent paper given at the Pan American Conference of Unsaturated Soils. The paper, “Comparing in situ soil water characteristic curves to those generated in the lab” by Campbell et al. (2018), illustrates how well in situ generated SWCCs using the TEROS 21 calibrated matric potential sensor and METER’s GS3 water content sensor compare to those created in the lab.

Watch the webinar below:

&nbsp

Download the “Researcher’s complete guide to water potential”—>

Download the “Researcher’s complete guide to soil moisture”—>

Lab vs. field instruments—when to use both

Whether researchers measure soil hydraulic properties in the lab or in the field, they’re only getting part of the picture. Laboratory systems are highly accurate due to controlled conditions, but lab measurements don’t take into account site variability such as roots, cracks, or wormholes that might affect soil hydrology. In addition, when researchers take a sample from the field to the lab, they often compress soil macropores during the sampling process, altering the hydraulic properties of the soil.

Tree roots with moss covering them

Roots, cracks, and wormholes all affect soil hydrology

Field experiments help researchers understand variability and real-time conditions, but they have the opposite set of problems. The field is an uncontrolled system. Water moves through the soil profile by evaporation, plant uptake, capillary rise, or deep drainage, requiring many measurements at different depths and locations. Field researchers also have to deal with the unpredictability of the weather. Precipitation may cause a field drydown experiment to take an entire summer, whereas in the lab it takes only a week.

The big picture—supersized

Researchers who use both lab and field techniques while understanding each method’s strengths and limitations can exponentially increase their understanding of what’s happening in the soil profile. For example, in the laboratory, a researcher might use the PARIO soil texture analyzer to obtain accurate soil texture data, including a complete particle size distribution. They could then combine those data with an HYPROP-generated soil moisture release curve to understand the hydraulic properties of that soil type. If that researcher then adds high-quality field data in order to understand real-world field conditions, then suddenly they’re seeing the larger picture.

Lab and field instrument strengths and limitations

Table 1. Lab and field instrument strengths and limitations

Below is an exploration of lab versus field instrumentation and how researchers can combine these instruments for an increased understanding of their soil profile. Click the links for more in-depth information about each topic.

Particle size distribution and why it matters

Soil type and particle size analysis are the first window into the soil and its unique characteristics. Every researcher should identify the type of soil that they’re working with in order to benchmark their data.

Researcher holding a sprouting seedling in their hands

Particle size analysis defines the percentage of coarse to fine material that makes up a soil

If researchers don’t understand their soil type, they can’t make assumptions about the state of soil water based on soil moisture (i.e., if they work with plants, they won’t be able to predict whether there will be plant available water). In addition, differing soil types in the soil’s horizons may influence a researcher’s measurement selection, sensor choice, and sensor placement.

Read more

Download the “Researcher’s complete guide to soil moisture”—>

Which Soil Sensor Should I Choose?

Dr. Colin Campbell, METER soil scientist, explains soil sensor differences, pros, cons, and things to consider when choosing which sensor will best accomplish your research goals. Use the following considerations to help identify the perfect sensor for your research.  Explore the links for a more in-depth look at each topic.

Researcher Holding a TEROS 12

Scientists often measure soil moisture at different depths to understand the effects of soil variability and to observe how water is moving through the soil profile.

CHOOSE THE RIGHT MEASUREMENT

  • Volumetric Water Content:  If a researcher wants to measure the rise and fall of the amount (or percentage) of water in the soil, they will need soil moisture sensors. Soil is made up of water, air, minerals, organic matter, and sometimes ice.  As a component, water makes up a percentage of the total.  To directly measure soil water content, one can calculate the percentage on a mass basis (gravimetric water content) by comparing the amount of water, as a mass, to the total mass of everything else.  However, since this method is labor-intensive, most researchers use soil moisture sensors to make an automated volume-based measurement called Volumetric Water Content (VWC). METER soil moisture sensors use high-frequency capacitance technology to measure the Volumetric Water Content of the soil, meaning they measure the quantity of water on a volume basis compared to the total volume of the soil.  Applications that typically need soil moisture sensors are watershed characterization, irrigation schedulinggreenhouse management, fertigation management, plant ecology, water balance studies, microbial ecology, plant disease forecasting, soil respiration, hydrology, and soil health monitoring.
  • Water potential:  If you need an understanding of plant-available water, plant water stress, or water movement (if water will move and where it will go), a water potential measurement is required in addition to soil moisture. Water potential is a measure of the energy state of the water in the soil, or in other words, how tightly water is bound to soil surfaces. This tension determines whether or not water is available for uptake by roots and provides a range that tells whether or not water will be available for plant growth. In addition, water always moves from a high water potential to a low water potential, thus researchers can use water potential to understand and predict the dynamics of water movement.

Understand your soil type and texture

In soil, the void spaces (pores) between soil particles can be simplistically thought of as a system of capillary tubes, with a diameter determined by the size of the associated particles and their spatial association.  The smaller the size of those tubes, the more tightly water is held because of the surface association.

Clay holds water more tightly than a sand at the same water content because clay contains smaller pores and thus has more surface area for the water to bind to. But even sand can eventually dry to a point where there is only a thin film of water on its surfaces, and water will be bound tightly.  In principle, the closer water is to a surface, the tighter it will be bound. Because water is loosely bound in a sandy soil, the amount of water will deplete and replenish quickly.  Clay soils hold water so tightly that water movement is slow. However, there is still available water.

Note: Use the PARIO soil texture analyzer to automate soil texture identification.

Two measurements are better than one

In all soil types and textures, soil moisture sensors are effective at measuring the percentage of water. Dual measurements—using a water potential sensor in addition to a soil moisture sensor—gives researchers the total soil moisture picture and are much more effective at determining when, and how much, to water.  Water contendata show subtle changes due to daily water uptake and also indicate how much water needs to be applied to maintain the root zone at an optimal level.  Water potential data determine what that optimal level is for a particular soil type and texture.

Get the big picture with moisture release curves  

Dual measurements of both water content and water potential also enable the creation of in situ soil moisture release curves (or soil water characteristic curves) like the one below (Figure 1), which detail the relationship between water potential and water content.  Scientists and engineers can evaluate these curves in the lab or the field and understand many things about the soil, such as hydraulic conductivity and total water availability.

Turf-grass Soil Moisture Release Curve

Figure 1. Turfgrass soil moisture release curve (black). Other colors are examples of moisture release curves for different types of soil.

Read the full article

Download the “Researcher’s complete guide to soil moisture”—>

Download the “Researcher’s complete guide to water potential”—>

Get more information on applied environmental research in our

Take our Soil Moisture Master Class

Six short videos teach you everything you need to know about soil water content and soil water potential—and why you should measure them together.  Plus, master the basics of soil hydraulic conductivity.

Watch it now—>