Skip to content

Posts from the ‘Geophysics’ Category

Soil Sensors Help Thousand-Year-Old Levees Protect Residents of the Secchia River Valley

In Italy, on January of 2014, one of the Secchia river levees failed, causing millions of dollars in flood damage and two fatalities. Concerned with preventing similar disasters, scientists and geotechnical engineers are using soil sensors to investigate solutions in a project called, INFRASAFE (Intelligent monitoring for safe infrastructures) funded by the Emilia Romagna Region (Italy) on European Funds.  

Secchia river running through Italy

Secchia river in Italy (Image: visitsassuolo.it)

Professor Alberto Lamberti, Professor Guido Gottardi, Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna, along with Prof. Marco Bittelli, University of Bologna professor of Soil and Environmental Physics, installed soil sensors along some transects of the Secchia river to monitor water potential and piezometric pressure.  They want to study properties of the compacted levee “soil”, during intense flooding.  Bittelli comments, “Rainfall patterns are changing due to climate change, and we are seeing more intense floods. There is a concern about monitoring levees so that we can, through studying the process, eventually create a warning system.”  

Image of a white van parked on a road next to a trench built for burying sensor cables

Trench for burying sensor cables.

What Are The Levees Made Of?

Amazingly, some of these levees are very old, built at the beginning of the second millennium to protect the Secchia valley population from floods. “These rudimentary barrages were the starting point of the huge undertakings, aiming at the regulation and stabilization of the river, which were gradually developed and expanded in the following centuries…building up a continuous chain all along the river.” (Marchii et. al., 1995)

Vegetation in the Secchia River Floodplain

Vegetation in the Secchia River floodplain.

Unlike natural soil with horizons, the soil that makes up the levees is made up of extremely compact clay and other materials, which will pose challenges to the research team in terms of sensor installation.  The team will use soil sensors to determine when the compacted material that makes up the levees gets so saturated it becomes weak.  Bittelli says, “We are looking at the mechanical properties of the levees, but mechanical properties are strongly dependent on hydraulic properties, particularly soil water potential (or soil suction).  A change in water potential changes the mechanical properties and weakens the structure.”  This can happen either when a soil dries below an optimal limit or wets above it; the result is a weakened barrier that can fail under load.

Image of a research team using an installation tool to install water content sensors

Here the team uses an installation tool to install water content sensors.

Soil Sensors Present Installation Challenges

To solve the installation problems, the team will use a specialized installation tool to insert their water content sensors.  Bittelli says, “Our main challenge is to install sensors deep into the levees without disturbing the soil too much.  It’s very important to have this tool because clearly, we cannot dig out a levee; we might be the instigator of a flood. So it was necessary for us to be able to install the sensors in a relatively small borehole.”  The researchers will install the sensors farther down than the current tool allows, so they are modifying it to go down to eight or ten meters.  Bittelli explains, “We used a prototype installation tool which is two meters long. We modified it in the shop and extended it to six meters to be able to install water content sensors at further depths.”

Another challenge facing the research team is how to install water potential sensors without disturbing the levee.  Marco explains, “We placed an MPS-6 (now called TEROS 21) into a cylinder of local soil prepared in the lab. A sort of a muffin made of soil with an MPS-6 inside. Then we lowered the cylinder into the borehole, installed the sensor inside, and then slid it down into the hole.  Our goal is to try and keep the structure of the soil intact. Since the cylinder is made of the same local soil, and it is in good contact with the borehole walls, hydraulic continuity will be established.”

Image researcher placing an MPS-6 into a cylinder of soil

Researchers placed an MPS-6 into a cylinder of local soil prepared in the lab.

Unlike installing water content sensors, matric potential sensors don’t need to be installed in undisturbed soil but only require good contact between the sensor and the bulk soil so liquid water can easily equilibrate between the two. The researchers are also contemplating using a small camera with a light so they can see from above if the installation is successful.  

Find Out More

The researchers will collect data at two experimental stations, one on the Po river, and one on the Secchia River. So far, the first installation was successfully performed, and data are collected from the website. Bitteli says the first installation included water content, temperature, and electrical conductivity sensors, water potential sensors, and tensiometers connected to a wireless network that will transmit all the data to a central office for analysis.

You can read more about this project and how it’s progressing here.

Get more information on applied environmental research in our

Download the “Researcher’s complete guide to water potential”—>

Download the “Researcher’s complete guide to soil moisture”—>

Measuring Water Potential in Concrete

Trevor Dragon, a former METER Research and Development Engineer, was pouring concrete at his Beeville, Texas, farm one day and wondered if he could measure moisture in concrete with a matric potential sensor instead of the more traditionally used volumetric water content sensor (VWC) to get more accurate readings.  Dragon says, “We had about five concrete trucks come in that day, and we poured five different slabs.  Every truck had a different amount of water added.  One particular batch of concrete was really wet and soupy, and I became curious to measure it and compare it to the other slabs.”

Concrete slab drying down at Trevor's Texas farm.

Concrete slab drying down at Trevor’s Texas farm.

Why Measure Moisture in Concrete?

As concrete hardens, portland cement reacts with water to form new bonds between the components of the concrete.  This chemical process, known as hydration, gives concrete its characteristic rock-like structure.  Too much or too little water can reduce the strength of the concrete.  Adding excess water can lead to excessive voids in concrete while providing too little water can inhibit the cement hydration reaction. Thus, when you pour a slab in south Texas, where it’s exposed to high wind and intense heat, sufficient water must be added, and precautions must be taken to minimize evaporation of water from the slab surface as the concrete hardens.

Better Readings:

Dragon chose the matric potential sensor because he wondered if it would be more accurate than a VWC measurement.  He says, “I knew that VWC sensors were calibrated for soil, and because of that they would lack accuracy.  But the water potential sensor is calibrated for the ceramic it contains.  I figured it would be closer to the real thing without having to do a custom calibration.”

Moisture in concrete has been difficult to measure because the high electrical conductivity early in the hydration process throws off water content sensor calibration. So, Dragon was surprised when his data turned out to be really good.  He comments, “The dry down curve of the matric potential sensor was a perfect curve. There was a nice knee (drop from saturation) after about 200 minutes, and it just went down from there.  We’re kind of stumped because we are trying to understand why the data came out so well and why the curve looks so good.”  

MPS2 Water Potential in Concrete diagram

Water Potential in Concrete

The scientists at METER sent the drydown curve to Dr. Spencer Guthrie, a civil engineering professor, to see what he thought.  He explains, “I suspect that the concrete is experiencing initial set at around 200 minutes.  This is a very normal time frame by which finishing operations need to be complete.  At this stage in cement hydration, the concrete becomes no longer moldable.  A rigid capillary structure is forming, and individual pores are taking shape.  As hydration continues, the pores become smaller and smaller, which may explain the decrease in matric potential.”

New Methods:

One theory Dragon and his colleague Dr. Colin Campbell came up with was that perhaps Dragon’s unique method of inserting the sensors made a difference in the measurements.  He explains, “The first thing I did was look for the rebar in the concrete, and I placed the sensors in the exact center of one of the squares to avoid the influence of metal on the sensor electromagnetic field.  Also, I didn’t insert the sensors the same way you would insert them into soil.  In soil, you put the sensors in vertically; I placed the water potential sensor horizontally because in this case, I was not interested in how water was moving in the slab but how it was being used over time.

What Does It Mean for the Future?

The behavior of the water potential sensor embedded in the concrete clearly indicated a drying process where water becomes less available over time. However, the implications are still unknown.  Can the quality of the concrete be determined from the speed or extent of water becoming less available?  Hopefully, this opportunistic experiment by Dragon will lead to more tests to show whether this approach is useful to others.  

Dr. Guthrie agrees the idea should be explored further and comments, “The matric potential measurements were not redundant with the water content measurements.  Instead, they offered additional, interesting information about the early hydration characteristics of the concrete.  In the context of construction operations, the water potential data indicated what is normally determined by observing the impression left in the concrete surface from the touch of a finger.  In the context of research, however, the use of a water potential sensor may yield helpful information about how certain admixtures, for example, influence the development of hydration products in concrete over time.

Download the “Researcher’s complete guide to water potential”—>

Download the “Researcher’s complete guide to soil moisture”—>

Get more information on applied environmental research in our

This Idea Must Die: Using Filter Paper as a Primary Method for Water Potential

In a continuation of our popular series inspired by the book, This Idea Must Die:  Scientific Problems that are Blocking Progress,  Dr. Gaylon S. Campbell relates a story to illustrate the filter paper method, a scientific concept he thinks impedes progress:

Folded old paper sitting on a wooden table with a gold antique pocket watch and pen laying in top

There are times when our independent verification turns out to be like the clock and the whistle, and we end up inadvertently chasing our tail.

I remember listening to a story about a jeweler who displayed a big clock in the front window of his store. He noticed that every day a man would stop in front of the store window, pull out a pocket watch, set the watch to the time that was on the large clock, and then continue on.  One day, the jeweler decided to meet the man in order to see why he did that.  He went out to the front of the store, intercepted the man, and said, “I noticed you stop here every day to set your watch.”

The man replied, “Yes, I’m in charge of blowing the whistle at the factory, and I want to make sure that I get the time exactly right.  I check my watch every day so I know I’m blowing the whistle precisely at noon.”

Taken aback, the jeweler replied, “Oh, that’s interesting.  I set my clock by the factory whistle.”

The Wrong Idea:

In science, we like to have independent verification for the measurements we make in order to have confidence that they are made correctly, but there are times when our independent verification turns out to be like the clock and the whistle, and we end up inadvertently chasing our tail. I’ve seen this happen to people measuring water potential (soil suction). They measure using a fundamental method like dew point or thermocouple psychrometry, but then they verify the method using filter paper. Filter paper is a secondary method—it was originally calibrated against the psychometric method. It’s ridiculous to use a secondary method to verify an instrument based on fundamental thermodynamics.

Tunnel looking up from the bottom with square holes in the sides going up to the top

Geotechnical engineers use natural material such as soil and rock in combination with engineered material to design dams, tunnels, and foundations for all kinds of structures.

Where the Filter Paper Method Came From:

Before the development of modern vapor pressure measurements, field scientists needed an inexpensive, easy method to measure water potential. I.S. McQueen in the U.S. Geological Survey and some others worked out relationships between the water content of filter paper and water potential by equilibrating them over salt solutions. Later, other scientists standardized this method using thermocouple psychrometers so that there was a calibration. Filter paper was acceptable as a kind of a poor man’s method for measuring water potential because it was inexpensive, assuming you already had a drying oven and a balance. The thermocouple psychrometer and later the dew point sensor quickly supplanted filter paper in the field of soil physics. However, somewhere along the line, the filter paper technique was written into standards in the geotechnical area and the change to vapor methods never occurred. Consequently, a new generation of geotechnical engineers came to rely on the filter paper method. Humorously, when vapor pressure methods finally took hold, filter paper users became focused on verifying these new fundamental methods with the filter paper technique to see whether they were accurate enough to be used for water potential measurement of samples.

What Do We Do Now?

Certainly, there’s no need to get rid of the filter paper method. If I didn’t have anything else, I would use it. It will give you a rough idea of what the water potential or soil suction is. But the idea that I think has to die is that you would ever check your fundamental methods (dewpoint or psychrometer) against the filter paper method to see if they were accurate. Of course they’re accurate. They are based on first principles. The dew point or psychrometer methods are a check to see if your filter paper technique is working, which it quite often isn’t (watch this video to learn why).

Which scientific ideas do you think need to be revised?

Download the “Researcher’s complete guide to water potential”—>

Download the “Researcher’s complete guide to soil moisture”—>

Get more information on applied environmental research in our