Skip to content

Posts from the ‘Horticulture’ Category

Improve Your Plant Study: 3 Types of Environmental Data You May Be Missing

What data are you missing?

The environment plays a large role in any plant study. Ensuring you’re capturing weather and other environmental parameters in the best way allows you to draw better conclusions. To accurately assess plant stress tolerance, you must first characterize all environmental stressors. And you can’t do that if you’re only looking at above-ground weather data.

For example, drought studies are notoriously difficult to replicate and quantify. Knowing what kind of soil moisture data to capture can help you quantify drought, allowing you to accurately compare data from different years and sites.

Get better, more accurate conclusions

It’s important for your environmental data to accurately represent the environment of your site. That means not only capturing the right parameters but choosing the right tools to capture them. In this 30-minute webinar, application expert Holly Lane discusses how to improve your current data and what data you may not be collecting that will optimize and improve the quality of your plant study. Find out:

  • How to know if you’re asking the right questions
  • Are you using the right atmospheric measurements? And are you measuring weather in the right location?
  • Which type of soil moisture data is right for the goals of your research or variety trial
  • How to improve your drought study, why precipitation data is not enough, and why you don’t need to be a soil scientist to leverage soil data
  • How to use soil water potential
  • How accurate your equipment should be for good estimates
  • Key concepts to keep in mind when designing a plant study in the field
  • What ancillary data you should be collecting to achieve your goals

Register now—>

Presenter

Holly Lane has a BS in agricultural biotechnology from Washington State University and an MS in plant breeding from Texas A&M, where she focused on phenomics work in maize. She has a broad range of experience with both fundamental and applied research in agriculture and worked in both the public and private sectors on sustainability and science advocacy projects. Through the tri-societies, she advocated for agricultural research funding in DC. Currently, Holly is an application expert and inside sales consultant with METER Environment.

Soil Electrical Conductivity: Managing Salts for Sustained High Yields

Managing salts: Why you should care more

Mismanagement of salt applied during irrigation ultimately reduces production—drastically in many cases. Irrigating incorrectly also increases water cost and the energy used to apply it.

Understanding the salt balance in the soil and knowing the leaching fraction, or the amount of extra irrigation water that must be applied to maintain acceptable root zone salinity is critical to every irrigation manager’s success. Yet monitoring soil salinity is often poorly understood.

Measure EC for consistently high crop yields

In this webinar, world-renowned soil physicist Dr. Gaylon Campbell teaches the fundamentals of measuring soil electrical conductivity (EC) and how to use a tool that few people think about—but is absolutely essential for maintaining crop yield and profit. Learn:

  • The sources of salt in irrigated agriculture
  • How and why salt affects plants
  • How salt in soil is measured
  • How common measurements are related to the amount of salt in soil
  • How salt affects various plant species
  • How to perform the calculations needed to know how much water to apply for a given water quality

Register now—>

Presenter

Dr. Gaylon S. Campbell has been a research scientist and engineer at METER for over 20 years, following nearly 30 years on faculty at Washington State University. Dr. Campbell’s first experience with environmental measurement came in the lab of Sterling Taylor at Utah State University making water potential measurements to understand plant water status.

Dr. Campbell is one of the world’s foremost authorities on physical measurements in the soil-plant-atmosphere continuum. His book written with Dr. John Norman on Environmental Biophysics provides a critical foundation for anyone interested in understanding the physics of the natural world. Dr. Campbell has written three books, over 100 refereed journal articles and book chapters, and has several patents.

Learn more

Download the “Complete guide to irrigation management”—>

Snapdragons and soil moisture sensors

Charles Bauers has been a hydroponic snapdragon grower for 17 years. He knows—in detail—how to produce a good snap. But five years ago, he needed a better way to measure water.

Soil sensors optimize irrigation for improved quality and profit

“We had no quantitative way to measure water. That was the limiting factor for me,” he explains. Other inputs, like fertilizer, were quantifiable, but Bauers still depended on “gut feel” for watering, and no matter how quickly he reacted to changes in the crop, he couldn’t consistently produce grade-one snapdragons.

He wanted a scale, a “recipe of numbers” that would let him produce a good crop all the time in all sections of the greenhouse.

“There are always areas that seem to produce good quality flowers, and then there are areas that are a bit more of a challenge. I installed METER soil moisture sensors in the good areas and the stressed areas and compared the two. Then I worked my stressed areas up to the same numbers.”

The TEROS 12 is well-suited for greenhouse applications

Snapdragons are very sensitive to moisture stress. “It’s a ten-week crop. If you don’t get the moisture right in the first two weeks, you can compromise that crop.”

Identifying irrigation set points

The soil moisture sensors made a huge difference in Bauers’s ability to get the moisture right.  “They give me, targeted set points that I can shoot for all the time, and if I hit the targeted set point, I know I’m going to have good quality snaps, barring any other type of stress.

Grade-one snapdragons are worth 40% more than grade twos, and the difference between the two is created by “incipient stress—water stress that you can’t measure with your fingers. You can’t see it, you can’t feel it, it’s stress at the root. There’s a difference between a 28% vwc [volumetric water content] and a 23% vwc. It’s only 5%, but one produces grade ones and one produces grade twos.”

Empowered with real-time information

Moisture sensors gave Bauers real-time information that helped him get the watering right in every part of the greenhouse.  “I became more consistent because I had a number to go at. Because we’re a hydroponic crop, we see the effects real quick, and I’d say ‘I just have to add a little more water here.’ But [before the sensors,] invariably we had areas that were stressed because you really never knew when you had enough water on that crop. With sensors, you can consistently put the right amount of water on all the time.”

Soil sensors helped identify and prevent irrigation problems

Bauers quickly became adept at using sensors to address his irrigation challenges. The sensors showed him where his irrigation system was broken or underperforming, helped him identify problems like a root growing into a drip tube, or an unplugged dripper. But as the sensors became part of his routine, he was surprised to discover a new opportunity.

“Besides giving me the real-time information, the sensors gave me the ability to look at trends…over a week or a month and be proactive if we started moving away from our set point. We could add more water, set shorter run times, or just make some changes in the irrigation system to get more in line with the set points. That was one of my biggest surprises, how well we were able to be proactive toward environmental changes using the trending of the charts. That was a bonus.”

Reducing production and labor costs

After five years of daily monitoring, Bauers is now ready to go to an even higher level. “The next huge area we see sensors in is as big, or bigger, than the actual growing of the plant itself. We’re going to use these sensors to guide us as we strip out all excess production costs, and that’s happening today. As an example, over the next five months we’ll be trimming our substrate use by 85%. Not only do we save on materials, but if you have 85% less substrate to work with or move, you reduce labor costs.”

In fact, the sensors have become an integral part of how Bauers does business. I asked him how he would feel if he lost them. “My gosh,” he said, “It would be like going back ten years. It would be like trying to measure the temperature in a room without a thermometer. We are totally dependent on them.”

Learn more

Watch: How to improve irrigation scheduling using soil moisture—>

See all irrigation webinars—>

Download the “Complete guide to irrigation management”—>

Webinar: Why Water Content Can’t Tell You Everything You Need to Know

Water content can leave you in the dark

Everybody measures soil water content because it’s easy. But if you’re only measuring water content, you may be blind to what your plants are really experiencing.

Soil moisture is more complex than estimating how much water is used by vegetation and how much needs to be replaced. If you’re thinking about it that way, you’re only seeing half the picture. You’re assuming you know what the right level of water should be—and that’s extremely difficult using only a water content sensor.

Get it right every time

Water content is only one side of a critical two-sided coin. To understand when to water or plant water stress, you need to measure both water content and water potential.

TEROS 21 water potential sensor

In this 30-minute webinar, METER soil physicist, Dr. Colin Campbell, discusses how and why scientists combine both types of sensors for more accurate insights. Discover:

  • Why the “right water level” is different for every soil type
  • Why soil surveys aren’t sufficient to type your soil for full and refill points
  • Why you can’t know what a water content “percentage” means to growing plants
  • How assumptions made when only measuring water content can reduce crop yield and quality
  • Water potential fundamentals
  • How water potential sensors measure “plant comfort” like a thermometer
  • Why water potential is the only accurate way to measure drought stress
  • Why visual cues happen too late to prevent plant-water problems
  • Case studies that show why both water content and water potential are necessary to understand the condition of soil water in your experiment or crop

WATCH IT NOW—>

Presenter

Dr. Colin Campbell has been a research scientist at METER for 20 years following his Ph.D. at Texas A&M University in Soil Physics. He is currently serving as Vice President of METER Environment. He is also adjunct faculty with the Dept. of Crop and Soil Sciences at Washington State University where he co-teaches Environmental Biophysics, a class he took over from his father, Gaylon, nearly 20 years ago. Dr. Campbell’s early research focused on field-scale measurements of CO2 and water vapor flux but has shifted toward moisture and heat flow instrumentation for the soil-plant-atmosphere continuum.

Learn more

Download the “Complete guide to irrigation management”—>

Chalk talk: How to measure leaf transpiration

In his latest chalk talk video, Dr. Colin Campbell discusses why you can’t measure leaf transpiration with only a leaf porometer.

Image of the SC-1 Leaf Porometer which measures stomatal conductance
The SC-1 Leaf Porometer measures stomatal conducance

He teaches the correct way to estimate the transpiration from a single leaf and how a leaf porometer can be used to obtain one of the needed variables.

Watch the video

 

Video transcript

Hello, my name is Colin Campbell. I’m a senior research scientist here at METER Group. And today we’ll talk about how to estimate the transpiration from a single leaf. Occasionally we get this question: Can I estimate the transpiration from a leaf by measuring its stomatal conductance? Unfortunately, you can’t. And I want to show you why that’s true and what you’ll need to do to estimate the total conductance, and therefore, the evaporation of a leaf.

Image of a researcher Measuring stomatal conductance With an SC-1 Leaf Porometer
Researcher Measuring Stomatal
Conductance With an sc-1 Leaf Porometer

The calculation of transpiration (E) from a leaf is given by Equation 1 

Image of the equation used for the calculation of transpiration from a leaf
Equation 1

where gv is the total conductance of vapor from inside the leaf into the air, Cvs is the concentration of vapor inside the leaf and Cva is the concentration of vapor in the air.

Read more—>

Learn more about canopy measurements

Download the researcher’s complete guide to leaf area index—>

Questions?

Our scientists have decades of experience helping researchers measure the soil-plant-atmosphere continuum. Contact us for answers to questions about your unique application.

How to interpret soil moisture data

Surprises that leave you stumped

Soil moisture data analysis is often straightforward, but it can leave you scratching your head with more questions than answers. There’s no substitute for a little experience when looking at surprising soil moisture behavior. 

Image of orange, yellow, and white flowers in a green house
Join Dr. Colin Campbell April 21st, 9am PDT as he looks at problematic and surprising soil moisture data.

Understand what’s happening at your site

METER soil scientist, Dr. Colin Campbell has spent nearly 20 years looking at problematic and surprising soil moisture data. In this 30-minute webinar, he discusses what to expect in different soil, environmental, and site situations and how to interpret that data effectively. Learn about:

  • Telltale sensor behavior in different soil types (coarse vs. fine, clay vs. sand)
  • Possible causes of smaller than expected changes in water content 
  • Factors that may cause unexpected jumps and drops in the data
  • What happens to dielectric sensors when soil freezes and other odd phenomena
  • Surprising situations and how to interpret them
  • Undiagnosed problems that affect plant-available water or water movement
  • Why sensors in the same field or same profile don’t agree
  • Problems you might see in surface installations

Watch it now

Learn more

Download the “Complete guide to irrigation management”—>

Best of 2019: Environmental Biophysics

In case you missed them, here are our most popular educational webinars of 2019. Watch any or all of them at your convenience.

Lab vs. In Situ Water Characteristic Curves

Image of a researcher running hand across wheat

Researcher Running A Hand Across Wheat

Lab-produced soil water retention curves can be paired with information from in situ moisture release curves for deeper insight into real-world variability.

Watch it here—>

Hydrology 101: The Science Behind the SATURO Infiltrometer

Image of a fallen tree being supported off the ground by many other trees

A Forest With Fallen Trees

Dr. Gaylon S. Campbell teaches the basics of hydraulic conductivity and the science behind the SATURO automated dual head infiltrometer.

Watch it here—>

Publish More. Work Less. Introducing ZENTRA Cloud

Image of a researcher collecting information from a ZL6 data logger

Researcher is Collecting Data from the ZL6 Data Logger

METER research scientist Dr. Colin Campbell discusses how ZENTRA Cloud data management software simplifies the research process and why researchers can’t afford to live without it.

Watch it here—>

Soil Moisture 101: Need-to-Know Basics

Soil moisture is more than just knowing the amount of water in soil. Learn basic principles you need to know before deciding how to measure it.

Watch it here—>

Soil Moisture 201: Moisture Release Curves—Revealed

Image of rolling hills of farm land

Rolling Hills of Farm Land

A soil moisture release curve is a powerful tool used to predict plant water uptake, deep drainage, runoff, and more.

Watch it here—>

Soil Moisture 301: Hydraulic Conductivity—Why You Need It. How to Measure it.

Image of a researcher measuring with the HYPROP balance

Researcher measuring with the HYPROP balance

If you want to predict how water will move within your soil system, you need to understand hydraulic conductivity because it governs water flow.

Watch it here—>

Soil Moisture 102: Water Content Methods—Demystified

Image of a researcher holding a TEROS 12 in front of a field

Modern Sensing is more than just a Sensor

Dr. Colin Campbell compares measurement theory, the pros and cons of each method, and why modern sensing is about more than just the sensor.

Watch it here—>

Soil Moisture 202: Choosing the Right Water Potential Sensor

Image of a dirt plowed field being used for electrical conductivity

Electrical Conductivity

METER research scientist Leo Rivera discusses how to choose the right field water potential sensor for your application.

Watch it here—>

Water Management: Plant-Water Relations and Atmospheric Demand

Dr. Gaylon Campbell shares his newest insights and explores options for water management beyond soil moisture. Learn the why and how of scheduling irrigation using plant or atmospheric measurements. Understand canopy temperature and its role in detecting water stress in crops. Plus, discover when plant water information is necessary and which measurement(s) to use.

Watch it here—>

How to Improve Irrigation Scheduling Using Soil Moisture

Image of a crop field

Capacitance

Dr. Gaylon Campbell covers the different methods irrigators can use to schedule irrigation and the pros and cons of each.

Watch it here—>

Next up:

Soil Moisture 302: Hydraulic Conductivity—Which Instrument is Right for You?

Image of plants growing out of the sand

Leo Rivera, research scientist at METER teaches which situations require saturated or unsaturated hydraulic conductivity and the pros and cons of common methods.

Watch it here—>

Image of grapes growing off of a tree

Predictable Yields using Remote and Field Monitoring

New data sources offer tools for growers to optimize production in the field. But the task of implementing them is often difficult. Learn how data from soil and space can work together to make the job of irrigation scheduling easier.

Watch it here—>

Learn more

Download “The researcher’s complete guide to soil moisture”

Download “The researcher’s complete guide to water potential

Chalk Talk: Why is Humidity Relative?

Dr. Colin Campbell, a senior research scientist at METER Group, as well as adjunct faculty at Washington State University teaches about relative humidity.

Image of a forest with clouds and fog everywhere
Comparing RH at different research sites can be a challenge

Watch the video to find out why we use the term relative humidity and why comparing RH at different research sites can be a challenge.

 

Video transcript

Why is humidity relative?

Hi, I’m Dr. Colin Campbell. I’m a senior research scientist here at METER Group, as well as adjunct faculty up at Washington State University. And I teach a class in environmental biophysics. And today, we’re going to be talking about relative humidity. Have you ever looked at a weather report and wondered, what do they mean by the term relative? Why aren’t we talking about absolute things? And so today I’m going to talk about what is relative humidity? Well, relative humidity we’re going to define here as just hr. And hr is equal to the partial pressure of water vapor in air divided by the saturation vapor pressure or the maximum possible partial pressure of water in air as a function of temperature. So this is relative because anytime we have a partial pressure of water vapor, we’re always dividing it by the maximum possible water vapor that could be in the air at any point.

Comparing RH at different sites is a challenge

So, why would relative humidity be such a challenge for us as scientists to use in comparing different sites? I wanted to talk about that so we can focus in here on this saturation vapor pressure. Over here we have Tetens equation. This says that the saturation vapor pressure, which is a function of air temperature is equal to 0.611 kPa times the exponential of a constant “b” times the air temperature divided by another constant “c” plus the air temperature. So at any point, depending on the air temperature, we can calculate the saturation vapor pressure, and then we can put it back into this equation and get our relative humidity. There are two situations we might think about for calculating our saturation vapor pressure. The most typical is this one: where that constant “b” is 17.502 degrees C. And the constant “c” is 240.97 degrees C (the units on this are degrees C, so these will cancel). If we’re over ice, those constants will be different: “b” would be 21.87 degrees C and “c” would be 265.5 degrees C. 

So as I mentioned, relative humidity is a challenging variable to use in research because while vapor pressure (ea) (the vapor pressure of the air) is somewhat conservative across a day, the saturation vapor pressure (with respect to air temperature), this changes slowly with temperature across the day. So if we graphed temperature on one axis and the relative humidity on the other axis, we might during a typical day have a temperature range that looks somewhat like this. And even if the actual vapor pressure “ea” wasn’t changing, we’d see a relative humidity trend that looked like this: only changing because of air temperature. And because of that, if we wondered how do I compare the water in the air at one research site, for example, with the water in the air at another research site? We might be inclined to average them. But because of this trend, the average of the relative humidity at any site tends to be around 0.60 to 0.65 and therefore will be totally irrelevant in the literature. 

So we need to speak in absolutes, and in my next lecture, I’m going to go into what we can do to calculate that absolute relative humidity. If you want to know more about making measurements in the atmosphere, go to metergroup.com, look at our atmospheric instrumentation, and you can learn more from there.

Download “The researcher’s complete guide to soil moisture”

Download “The researcher’s complete guide to water potential

Data deep dive: why am I seeing diurnal changes in soil moisture?

In the video below, METER soil scientist Dr. Colin Campbell discusses an often-misdiagnosed water content signal that looks like typical diurnal temperature cycling but is actually due to a phenomenon called hydraulic redistribution. He shows how easily these patterns can be seen in ZENTRA Cloud data management software.

Watch the video

 

 

 

Learn more

Learn more about measuring soil moisture. Download “The researcher’s complete guide to soil moisture“.

To understand how soil moisture and soil water potential work together, download “The researcher’s complete guide to water potential.”

Video transcript

Hello, my name is Colin Campbell. I’m a research scientist here at METER Group. And today we’re going to be digging into some water content data that I collected over the last summer. This is a field that’s planted in spring wheat, it’s about 700 meters across. And we’ve set up six measurement sites. At each one of these sites, we’re making several measurements, but the ones we’re going to talk about today are just water content. And while we’ve installed water content sensors at 15, 45, and 65 centimeters, we’re just going to focus on the 65-centimeter water content sensors. These sensors are the METER TEROS 12 soil moisture sensors, so they also measure electrical conductivity and temperature, and we’re going to look at temperature as well because that figures into this discussion. 

So this field was planted in April of 2019. And not a lot interesting goes on at the 65-centimeter depth through April, May, and June. But as we get into July, the wheat is reaching maturity, and they essentially are going to cut off the irrigation water here on July 22. So up to July 22, there’s really not a lot of movement in the water content. One of the sites decreases a little bit, but each line is flat. What I noticed as I was looking at this particular graph is after this long period of very flat data, after June 22 when the irrigation was cut off, we start to see some movement in the water content at this depth Not only is there movement down, but there’s a daily movement of the actual water content signals, all but this top light green line. And it made me wonder, what’s going on? 

Image of a field of wheat

Diurnal water content fluctuations are not always due to temperature.

Initially, whenever you see a diurnal movement, you suspect that it’s caused by temperature. It’s been said that every sensor is probably a temperature sensor first, and a sensor of whatever we’re really interested in second. In this case, we can look to see what the temperature is doing at that depth. Here’s soil temperature, at 65 centimeters, and even though there’s just a little bobble in the line, the line is almost completely flat. We see the seasonal trends in temperature, but really no diurnal temperature cycling. And this scale is also fairly small. So back to our 65-centimeter water content. If it’s not temperature that’s affecting these lines, then what is it? 

I’ve seen this before in an experiment that I did years ago in a non-irrigated wheat field. We were measuring down at  150 centimeters, and when the water had been used up in the upper levels of the soil profile, the roots of the wheat plant just simply went down to 150 centimeters and started taking water up. So this is what I assume is also happening here. The wheat has extended its roots down to 65 centimeters, since its irrigated wheat. That’s not too deep, but wheat doesn’t necessarily need to get its roots down super deep. And as the wheat accesses that water, we’re seeing these daily drops in water. But then we’re seeing just a slight increase in water. Here on July 28, we’re seeing that water go up slightly. And so why is this happening? We might understand how the water is being taken out of the soil, but why do we see a slight increase in the water content (just a few tenths of a percent)? 

What I think is happening, in this case, is that it’s not temperature, but actually, roots are growing down into this area, and they’re probably growing around the sensor. As we change from day to night, we see a release in the elasticity of the water in the xylem, and maybe just a little bit more water down in the roots as they’re the transpiration pull of the day is lessened and stops overnight. The stomates are closed, and we see just a little bit of water coming back into the roots and possibly into the soil. 

Now there was a big discussion many years ago about whether this was something called hydraulic lift where trees could take up water from deep in the soil profile and essentially give it back to plants near the surface. And although it was a great debate, it was never proven that this actually happened: water being spread from deeper locations to more shallow locations by roots. But this is probably hydraulic redistribution where we just have roots filling with water, and when they are filled, we see a little bit in the water content sensor.

Chalk Talk: Intensive vs. Extensive Variables

Learn the difference between intensive and extensive variables and how they relate to soil water potential vs. soil water content in our new Chalk Talk whiteboard series. In this video series, Dr. Colin S. Campbell teaches basic principles of environmental biophysics and how they relate to measuring different parameters of the soil-plant-atmosphere continuum.

Watch the video

 

Learn more

To learn more about measuring water potential vs. water content read: Why soil moisture sensors can’t tell you everything.

Download the “Researcher’s complete guide to water potential”—>

Download the “Researcher’s complete guide to soil moisture”—>

Video transcript

Hello, my name is Colin Campbell. I’m a senior research scientist here at METER group. And I teach a class on environmental biophysics. Today I wanted to talk about something we teach in the class: the difference between extensive and intensive variables. I’d like to do this with the goal of relating it to the difference between volumetric water content and water potential. 

Here, I have a picture of a ship moving through the ice and some metal that’s been heated in a furnace. I think we would agree the ship has the highest amount of heat in it compared to this very small piece of metal. And if we placed that piece of metal onto the outside of the ship, despite the fact that there is more heat in the ship, we know the heat would not move from the high amount of heat (ship) to the low amount of heat (metal). It would actually move from the highest temperature to the lowest temperature. Why is that?

The reason is that heat moves because of temperature and not because of heat content or the amount of heat in something. Heat content defines an amount or an extent. And we generally term something that defines an extent or an amount as an extensive variable.An extensive variable depends broadly on the size of something or how much of something there is. 

This differs for temperature. Temperature doesn’t depend on size. The temperature could be the same in a very small room or a very large room, but the amount of heat or heat content in those rooms would be quite different. When we describe temperature, we talk about intensity, which is why we call these types of variables intensive variables. This is because they don’t depend on size or amount. 

Let’s talk about another example. Here’s your heating bill. Maybe it’s natural gas. What you’re paying for is the amount of heat you put into the house. But the question is, are you comfortable in the house? And from this bill, we can’t tell. Maybe you put in 200 heat units, whatever those might be. We can’t tell if that’s comfortable because we don’t know the size of the house or the type of insulation. All those things would influence whether you were comfortable. 

Alternatively, if the temperature is 71 F that’s quite comfortable. That’s equivalent to about 22 degrees Celsius. So the intensive variable, temperature, is different than the extensive variable, heat content, that tells us how much heat we put in. And that’s important because at the end of the day, that leads to cost. 

On this side, we don’t know how much we paid to keep it at 22 C because heat content doesn’t tell us anything about that. But the intensive variable temperature does tell us something about comfort. So both of these variables are critical to really understanding something about our comfort in the house. 

Now let’s talk about the natural environment. Specifically, we’re going to talk about soils. We’ll start with the extensive variable. When we talk about water in soil, the extensive variable is, of course, water content. Water content defines the amount of water. Why would we care about water content? Well, for irrigation or a water balance.

The intensive variable is called water potential. What does water potential tell us? It tells us if soil water is available and also predicts water movement. If this soil had a water content of 25% VWC and another soil was at 20% VWC, would the water move from the higher water content to the lower water content? Well, that would be like our example of the ship and the heated piece of metal. We don’t know if it would move. It may move. And if the soil on either side was exactly the same, we might presume that it would move from the higher water content to the lower water content, but we actually don’t know. Because the water content is an extensive variable, it only tells us how much there is. It won’t tell us if it will move. 

Now, if we knew that this soil water potential was -20 kPa and this soil water potential over here was -15 kPa, we would know something about where the water would move, and it would do something different than we might think. It would move from the higher water potential to the lower water potential against the gradient in water content, which is pretty interesting but nonetheless true. Water always moves from the highest water potential to the lowest water potential.

This helps us understand these variables in terms of plant comfort. We talked about the temperature being related to human comfort. We know at what temperatures we are most comfortable. With plants, we know exactly the same thing, and we always turn to the intensive variable, water potential, to define plant comfort.

For example, if we have an absolute scale like water potential for a particular plant, let’s say -15 kPa is the upper level for plant comfort, and -100 kPa is the lower level of comfort, we could keep our water potential in this range. And the plant would be happy all the time. Just like if we kept our temperature between 21 and 23 Celsius, that would be comfortable for humans. But of course, we humans are different. Some people think that temperature is warm, and some think it’s cold. And it’s the same for plants. So this isn’t a hard and fast rule. But we can’t say the same thing with water content. There’s no scale where we can say at 15% water content up to 25% water content you’ll have a happy plant That’s not true.If we know something about the soil, we can infer it. But soil is unique. And we’d have to derive this relationship between the water content and the water potential to know that. 

So why would we ever think about using water content when we measure water in the soil? One reason is it’s the most familiar to people. And it’s the simplest to understand. It’s easy to understand an amount. But more importantly, when we talk about things like how much we’re going to irrigate, we might need to put on 10 millimeters of water to make the plants happy. And we’d need to measure that. Also if we want to know the fate of the water in the system, how much precipitation and irrigation we put on versus how much is moving down through the soil into the groundwater, that also relates to an amount.  

But when we want to understand more about plant happiness or how water moves, it’s going to be this intensive variable, water potential that makes the biggest difference. And so with that, I’ll close. I’d love for you to go check out our website www.metergroup.com to learn a little bit more about these measurements in our knowledge base. And you’re also welcome to email me about this at colin.campbell@meter group.com.

Take our Soil Moisture Master Class

Six short videos teach you everything you need to know about soil water content and soil water potential—and why you should measure them together.  Plus, master the basics of soil hydraulic conductivity.

Watch it now—>