Skip to content

Posts from the ‘Hydrology’ Category

Using Pedotransfer Functions to Predict Soil Properties

In this latest chalk talk video, METER soil scientist and application expert, Leo Rivera, discusses the use of pedotransfer functions (PTFs) for predicting soil properties such as hydraulic conductivity and field capacity.

He explains that while direct measurements are ideal, PTFs can provide rapid, cost-effective alternatives. PTFs use soil texture, particle size distribution, and bulk density as inputs, with accuracy depending on the quality of the database and the input data. There are limitations, such as PTFs not accounting for soil structure and organic matter, which can significantly impact hydraulic conductivity, thus, Rivera recommends using PTFs judiciously. PTFs can be especially helpful for large-scale assessments, and he suggests seeking tools that incorporate more parameters for improved accuracy.

Learn more:

Watch our Soil Moisture Master class→

See METER environmental sensors

Video transcript

0:00
Hi. My name is Leo Rivera, and this is a METER Chalk Talk.

0:11
Today I want to talk about a topic that I get asked a lot about, and it has to do with how to predict some of these soil properties that we typically measure. So we often have used tools to measure things like soil hydraulic conductivity, retention curves, predicting field capacity and permanent wilting point. And ideally, that’s the best way we can do it, is by making those measurements. But that’s not always an option. So there are times where we need to be able to more rapidly assess soil properties, where we don’t have the budget to assess some of these more expensive soil properties to measure. And there are tools available to make these predictions rather than making the measurements. And I want to talk about those today to make sure that you understand the capabilities of these tools, that they’re out there, but also understand the limitations. And so the primary tool I’m going to talk about is a pedotransfer function, or a PTF.

So typically, with a pedotransfer function, we’re using something like soil texture. So for example, I have here an image of the soil triangle, and I can say I have a clay loam soil. So I’ve got my clay loam right here. And my goal is to predict field capacity. My goal is to predict field capacity for minus 33 kPa, and permanent wilting point, which is minus 1500 kPa, typically to make those measurements, it’s going to take several days to several months, depending on how you choose to make that measurement. But that’s not always an option. So we can use a petal transfer function to take that property, like soil texture, and predict those values. And pedotransfer functions also can be used to predict things like hydraulic conductivity. So you can see an example of a hydraulic conductivity graph here as well. So a pedotransfer function can be a really powerful tool to predict some of these properties that are typically take more time or more expensive to measure, and maybe you don’t have the time to make those measurements. So it’s really important to understand how a pedotransfer function works before utilizing this tool.

So pedotransfer functions utilize databases, whether it’s soil survey or other generated databases, where you have a lot of soil data, and you have all of these data, like texture, density, where they’ve already measured, hydraulic conductivity and some of these other soil properties. It then takes your input and utilizes that database to best predict what those values are that you’re trying to assess. So if I’m trying to predict, for example, field capacity, you can input parameters like soil texture, particle size distribution and bulk density. And you can do this in various orders. You can use soil texture on its own. You can use particle size distribution on its own, or you can combine particle size distribution and soil bulk density together to make these predictions. And it’s going to go into that database and try and make its best prediction based on the data available on that database.

Your pedotransfer function is only going to be as strong as the data that’s in the database, but it’s also only going to be as powerful as how good of an input you give it to predict these these values. So if we’re using soil texture on its own, as you can imagine, if I was predicting a clay as a soil texture, we’ll just use that as our example. If we look at our clay soil on the on the soil texture triangle, that is a huge range of combinations of sand, silt and clay fraction. So as you can imagine, that’s a pretty broad area that you’re trying to predict from, and there’s a higher potential for error in that prediction. Now, if we were to refine that and use the particle size distribution, so if we knew our exact sand, silt and clay fraction that we were trying to predict, we could then refine our predictions. We’re going to get rid of that circle, and we’re going to refine our prediction, saying, our soil has exactly this amount of sand, silt and clay. And that’s going to refine how the pedotransfer function is pulling those data from in the database to predict those values.

But as we know, soil texture on its own and particle size on its own only tells part of the story. So we can further refine that by adding our bulk density into that prediction, which is going to help improve the prediction of either field capacity or hydraulic conductivity. And in some areas, that should be fine. And so as long as you’re happy with that level of error, that’s fine. But, especially when we’re looking at things like hydraulic conductivity, we know there are other factors that play a big role in hydraulic conductivity, such as soil structure. So ideally, we would be including structure in our prediction, and organic matter in our prediction, because we all we know that these play a significant role in how soil transmits water, but most pedotransfer function, tools like Rosetta and Soil View don’t really take these into account.

So when you’re looking at these values, especially trying to assess measurements like hydraulic conductivity, you need to understand these limitations when using these tools. Now, there are other databases and pedotransfer function tools out there that are doing a better job of taking some of these into account. And if you’re going to use those tools, you want to try to make sure, if you’re if you’re really concerned with the accuracy of your values that you’re using pedotransfer function models that take more of these parameters into account. So the more inputs you can have into your prediction, the more accurate you’re likely going to come out with your predictions of these factors.

I just wanted to cover some of the basics on pedotransfer functions, and if you’re going to use them. They’re really powerful tools if we need to use them, especially when we’re trying to characterize large areas. It’s not always feasible to make measurements across these large areas, and they can help give us a little more data to work off of, rather than just the measurements on their own to try and characterize what’s happening across the large watershed, for example. But we need to understand how our inputs can affect the accuracy of those predictions. If you want to learn more about this or other topics, please visit us on our website www.metergroup.com or on our YouTube channel under meter talk talks and thank you for watching.

Office Hours Episode 11: Soil Moisture

There’s a lot to consider when collecting soil moisture measurements.

Get your soil moisture questions answered in our Office Hours series.

Join Environment Support Manager, Chris Chambers, and Director of Science Outreach, Leo Rivera, as they discuss submitted questions all about getting the best soil moisture measurements.

In the full episode, they discuss: 

  1. How difficult is the calibration of dielectric sensors? 
  2. How does soilless media affect the operation of dielectric sensors? 
  3. How much can organic soil amendments influence soil moisture? 
  4. Is it possible to determine the soil hydraulic properties from soil water content? 
  5. Why volumetric water content instead of gravimetric water content? 
  6. What is the best way to correct for the temperature sensitivity of sensors? 
  7. And more. 

Watch the full episode now: https://metergroup.com/office-hours-qa/office-hours-11-soil-moisture-measurements/

Why We Live Or Die By Soil Health

In our latest podcast, Dr. Cristine Morgan, one of the US’s premier soil scientists and Chief Scientific Officer at the Soil Health Institute shares her views on soil health: what it is, how to quantify it, what’s the payoff, and why it’s so critical to our success as a society.

“Our soils support 95 percent of all food production, and by 2060, our soils will be asked to give us as much food as we have consumed in the last 500 years.” (Credit: https://livingsoilfilm.com/)

Her thoughts? “We all live or die by soil, literally. We just have to remind people that it’s about quality of life. It’s about the food that you eat. It’s about the safety and welfare of your children.” 

LISTEN NOW—>

Notes

Dr. Cristine Morgan is the Chief Scientific Officer at the Soil Health Institute in North Carolina. Learn more about the Soil Health Institute on their website. 

Subscribe:

https://www.metergroup.com/we-measure-the-world/

Follow us:

Questions?

Our scientists have decades of experience helping researchers and growers measure the soil-plant-atmosphere continuum. 

Disclaimer

The views and opinions expressed in the podcast and on this posting are those of the individual speakers or authors and do not necessarily reflect or represent the views and opinions held by METER.

Episode 9: Pioneers of Environmental Measurement

What was the life of a scientist like before modern measurement techniques? In our latest podcast, Campbell Scientific’s Ed Swiatek and METER’s Dr. Gaylon Campbell discuss their association with three pioneers of environmental measurement.

Learn what it was like to practice science on the cutting edge. Discover the creative lengths they went to and what crazy things they cobbled together to get the measurements they needed.

Listen now—>

Hydraulic Conductivity: How Many Measurements Do You Need?

Two researchers show easier methods conform to standards

If you’re measuring saturated hydraulic conductivity with a double ring infiltrometer, you’re lucky if you can get two tests done in a day. For most inspectors, researchers, and geotechs—that’s just not feasible. Historically, double ring methods were the standard, however the industry is now more accepting of faster single ring methods with the caveat that enough locations are tested. But how many locations are enough?

Triple the tests you run in a day

Drs. Andrea Welker and Kristin Sample-Lord, researchers at Villanova University, are changing the way infiltration measurements are captured while keeping the standards of measurement high. They ran many infiltration tests with three types of infiltrometers with a variety of sizes and soil types. In this 30-minute webinar, they’ll discuss what they found to be the acceptable statistical mean for a single rain garden. Plus, they’ll reveal the pros and cons of each infiltrometer type and which ones were the most practical to use. Learn:

  • What types of sites were tested
  • How the spot measurements compared with infiltration rates over the whole rain garden
  • Pros and cons of each infiltrometer and how they compared for practicality and ease of use
  • What is an acceptable number of measurements for an accurate assessment

Register now—>

Presenters

Dr. Andrea Welker, PE, F.ASCE, ENV SP, is a Professor of Civil and Environmental Engineering and the Associate Dean for Academic Affairs at Villanova University. She joined Villanova after obtaining her PhD at the University of Texas at Austin. Her research focuses on the geotechnical aspects of stormwater control measures (SCMs) and the effectiveness of SCMs at the site and watershed scale.

Dr. Kristin Sample-Lord, P.E., is an Assistant Professor of geotechnical and geoenvironmental engineering in the Civil and Environmental Engineering Department at Villanova University. She received her PhD and MS from Colorado State University. Her research includes measurement of flow and transport in soils, with specific focus on green infrastructure and hydraulic containment barriers.

Related article: How to measure soil hydraulic conductivity
Related article: Which grain size analysis method is right for you?

Soil Hydraulic Properties—8 Ways You Can Unknowingly Compromise Your Data

Avoid costly surprises

Measuring soil hydraulic properties like hydraulic conductivity and soil water retention curves is difficult to do correctly. Measurements are affected by spatial variability, land use, sample prep, and more.

Image of a research using the SATURO infiltrometer in the field
Leo Rivera teaches soil hydraulic properties measurement best practices

Getting the right number is like building a house of cards. If one thing goes wrong—you wind up with measurements that don’t truly represent field conditions. Once your data are skewed in the wrong direction, your predictions are off, and erroneous recommendations or decisions could end up costing you a ton of time and money. 

Get the right numbers—every time

For 10 years, METER research scientist, Leo Rivera, has helped thousands of customers make saturated and unsaturated hydraulic conductivity measurements and retention curves to accurately understand their unique soil hydraulic properties. In this 30-minute webinar, he’ll explain common mistakes to avoid and best practices that will save you time, increase your accuracy, and prevent problems that could reduce the quality of your data. Learn:

  • Sample collection best practices
  • Where to make your measurements
  • How many measurements you need
  • Field mapping tools
  • How to get more out of your instruments
  • How to use the LABROS suite to fully characterize soils (i.e., full retention curves and hydraulic conductivity curves)
  • Best practices for measuring field hydraulic conductivity using SATURO

Watch it now—>

Data deep dive: When to doubt your measurements

Dr. Colin Campbell discusses why it’s important to “logic-check” your data when the measurements don’t make sense.

Image of the Wasatch Plateau

Wasatch Plateau

In the video below, he looks at weather data collected on the Wasatch Plateau at 10,000 feet (3000 meters) in the middle of the state of Utah.

Watch the video

 

Video transcript

My name is Colin Campbell, I’m a research scientist here at METER group. Today we’re going to spend time doing a data deep dive. We’ll be looking at some data coming from my research site on the Wasatch Plateau at 10,000 feet (3000 meters) in the middle of the state of Utah. 

Right now, I’m interested in looking at the weather up on the plateau. And as you see from these graphs, I’m looking at the wind speeds out in the middle of three different meadows that are a part of our experiment. At 10,000 feet right now, things are not that great. This is a picture I collected today. If you look very closely, there’s an ATMOS 41 all-in-one weather station. It includes a rain gauge. And down here is our ZENTRA ZL6 logger. It’s obviously been snowing and blowing pretty hard because we’ve got rime ice on this post going out several centimeters, probably 30 to 40 cm. This is a stick that tells us how deep the snow is up on top. 

One of the things we run into when we analyze data is the credibility of the data and one day someone was really excited as they talked to me and said, “At my research site, the wind speed is over 30 meters per second.” Now, 30 meters per second is an extremely strong wind speed. If it were really blowing that hard there would be issues. For those of you who like English units, that’s over 60 miles an hour. So when you look at this data, you might get confused and think: Wow, the wind speed is really high up there. And from this picture, you also see the wind speed is very high. 

But the instrument that’s making those measurements is the ATMOS 41. It’s a three-season weather station, so you can’t use it in snow. It’s essentially producing an error here at 30 meters per second. So I’ll have to chop out data like this anemometer data at the summit where the weather station is often encrusted with snow and ice. This is because when snow builds up on the sonic anemometer reflection device, sometimes it simply estimates the wrong wind speed. And that’s what you’re seeing here. 

This is why it’s nice to have ZENTRA cloud. It consistently helps me see if there’s a problem with one of my sensors. In this case, it’s an issue with my wind speed sensors. One of the other things I love about ZENTRA Cloud is an update about what’s going on at my site. Clearly, battery use is important because if the batteries run low, I may need to make a site visit to replace them. However, one of the coolest things about the ZL6 data logger is that if the batteries run out, it’s not a problem because even though it stops sending data over the cellular network, it will keep saving data with the batteries it has left. It can keep going for several months. 

I have a mix of data loggers up here, some old EM60G data loggers which have a different voltage range than these four ZL6 data loggers. Three of these ZL6s are located in tree islands. In all of the tree islands, we’ve collected enough snow so the systems are buried and we’re not getting much solar charging. The one at the summit collects the most snow, and since late December, there’s been a slow decline in battery use. It’s down. This is the actual voltage on the batteries. The battery percentage is around 75%. The data loggers in the two other islands are also losing battery but not as much. The snow is just about to the solar charger. There’s some charging during the day and then a decrease at night. 

So I have the data right at my fingertips to figure out if I need to make a site visit. Are these data important enough to make sure the data loggers call in every day? If so, then I can decide whether to send someone in to change batteries or dig the weather stations out of the snow. 

I also have the option to set up target ranges on this graph to alert me whether the battery voltage is below an acceptable level. If I turn these on, it will send me an email if there’s a problem. So these are a couple of things I love about ZENTRA cloud that help me experiment better. I thought I’d share them with you today. If you have questions you want to get in contact me with me, my email is [email protected]. Happy ZENTRA clouding.

Download the researcher’s complete guide to soil moisture—>

Download the researcher’s complete guide to water potential—>

Soil sensors help solve putting green water distribution issues

Distribution of soil water in high-sand-content putting greens is a major concern for golf course superintendents. Gravel is commonly used as a component of a sand-based root zone to increase moisture retention, but due to gravity, the contour and slope of a putting green significantly affect moisture retention. Coarse-textured soils often become too dry in higher elevations and too wet in lower elevations. This hampers performance and increases water and labor inputs. 

Image of a golfer putting on a putting green at a golf course
The contour of a putting green affects moisture retention


To fix this problem, Thomas Green, a graduate student at Michigan State University, and a team of researchers are assessing the impact of gravel layer particle size and slope on soil water content in a variable-depth, high-sand content root zone.  He says, “Due to lack of published research and the USGA’s wide-ranged specification for gravel selection based on the root zone material, determining the optimal bridging, filtering, permeability, and uniformity factors capable of increasing root zone soil moisture uniformity is critical.”

Validating previous turfgrass experiments

Green and his team set out to validate previous turf experiments done at MSU which showed that increasing the particle size difference between the gravel and root zone (sand) layers, in combination with a variable-depth root zone (shallower at the slope apex, deeper at the slope base) would improve soil moisture uniformity. 

He says, “We wanted to retain this moisture consistently throughout the whole profile over the entire green. Our experiments decreased the root zone depth in relation to our gravel layer. So at the peak, we reduced the root zone, and in the valleys, we increased the root zone to eliminate wet spots where water accumulates.”

Water potential is the key

Green says the goal was to manipulate the “head” (or water potential) in the peaks and valleys. He explains, “We tested particle size differences between a high-sand, root-zone mix and the gravel layer. Past studies show that the greater the difference between the root zone particle size and the gravel particle size, the more water is retained at the interface. Essentially in the valleys, we increased the depth of the sand layer to create (in physics terms) a large head that forced more water to drain. At the top of the green, we did the opposite and made a thin layer of sand so more water was available. Basically, it was all about manipulating the water potential or tension on the water to retain the right level of moisture.”

The diagrams below illustrate the physics of how this works:

Diagram of sand and gravel layers in a putting green
Figure 1. Diagram of sand and gravel layers in a putting green

In Figure 1, the gravel provides a textural barrier where pores must be saturated for water to move into the gravel.

Close up diagram of tall sand layers in the valley
Figure 2. Closeup of tall sand layer in the valley

Figure 2 is a closeup of the tall layer. Cohesion of water molecules together and adhesion to soil particles ties water together and exerts downward force or tension on water at the top of the profile. The larger the height from the top of the profile to the saturated surface, the more tension on the water (lower water potential).

Close up diagram of short sand layer at the peak
Figure 3. Closeup of short sand layer at the peak

Figure 3 is a closeup of the short sand layer. Shorter height above the saturation zone reduces the tension in the top layer of soil (higher water potential). Thus, the high part of the green with the thinnest sand layer will have less tension and more water than the thick layer in the lower part of the green. To visualize what soil tension is like, think of people hanging on people (Figure 4). The more people there are, the more “pull” will be exerted on the top person.

Diagram of a comparison of soil tension to people hanging on people
Figure 4. Soil tension is like people hanging on people. The more people, the more pull exerted on the top person.

Eliminating edge effects

Green used METER soil moisture and temperature sensors at three different depths along with METER data loggers to validate that the water was in the right place. He inserted the sensors into an enormous box that mimicked a putting green. “I created a 4-ft x 4-ft module to simulate a sloping green. I had to figure out how large it should be to eliminate edge effects (water preferentially moving toward the container edges). The soil moisture sensor helped me determine just how large this box had to be to get accurate measurements.”

Green says the surface measurements were the most important, “I was interested in that top depth because in a golf setting, that’s where you need to control moisture. In a putting green, turfgrass roots aren’t very deep because the grass is so short.”

USGA has adopted the new method

Green says the results turned out as expected. “We expected that if we increased the gravel particle size difference and reduced sand depth, we would see increased water retention in our root zone profile, and that’s exactly what happened. The great thing is the USGA has now somewhat adopted these new recommendations. More and more golf courses are going to this construction method. It’s good for the industry because they’re conserving water.”

In the future, Green says he’d like to explore some research done by F.W. Taylor in the early 1900s. Taylor thought about using a vertical sand or gravel strip contoured on a slope to form a barrier to water moving downhill instead of plastic or polyethylene. This idea is illustrated beautifully in the classic 1950s era film by Dr. Walter Gardner.

Download the researcher’s complete guide to soil moisture—>

Download the researcher’s complete guide to water potential—>

Founders of Environmental Biophysics: Walter Gardner

Visualizing water flow in soil

This week, in our “Founders” series, we highlight a soil physicist.

Image of soil being held in a researchers hand

Water movement in soil defies intuition

When Dr. Walter Gardner passed away in June (2015), many viewed the film Water Movement in Soils as one of the main accomplishments of a remarkable career. Dr. Gardner and Jack Hsieh made the film in 1959 at Washington State University. The technology they used was impressive—it was years before advanced electronics would make time lapse movies routine—but Dr. Gaylon Campbell finds the ideas behind the experiments even more remarkable.

“Once you’ve seen the film, you can go back to the unsaturated flow theory and see how it would work,” Campbell says, “but the ideas aren’t really obvious. I wish I knew how he thought of doing that.”

At one point in the film, Gardner himself says that the phenomena he illustrates in the film can be seen in nature “if one observes carefully.” It’s possible that some of these careful observations were made in the fields around Washington State University, where farmers often turned the surface layer of soil over using a moldboard plow. This created a layer of surface soil with a layer of straw underneath it—exactly the conditions Gardner describes in the film as leading to erosion, reduced water in the root zone, and damage to the soil in the plow zone.

Though agriculture was the obvious target of the film, for a while it was also a big hit with the US Golf Association. Golf greens are mown short and get a lot of abuse. They need to be watered and fertilized heavily, but how do you keep enough water on the plants between irrigations without leaching nutrients out of the root zone? Water Movement in Soils provides a perfect answer. Gardner consulted for the USGA and used his film to train people who designed and constructed the greens.

Water movement in soil defies intuition

Our intuitions about how water moves in soil are often wrong. More than fifty years after it was made, this classic film still has the power to help people understand what’s really going on.

Watch the video

 

Learn more

Download “The researcher’s complete guide to soil moisture”

Download “The researcher’s complete guide to water potential

Best of 2019: Environmental Biophysics

In case you missed them, here are our most popular educational webinars of 2019. Watch any or all of them at your convenience.

Lab vs. In Situ Water Characteristic Curves

Image of a researcher running hand across wheat

Researcher Running A Hand Across Wheat

Lab-produced soil water retention curves can be paired with information from in situ moisture release curves for deeper insight into real-world variability.

Watch it here—>

Hydrology 101: The Science Behind the SATURO Infiltrometer

Image of a fallen tree being supported off the ground by many other trees

A Forest With Fallen Trees

Dr. Gaylon S. Campbell teaches the basics of hydraulic conductivity and the science behind the SATURO automated dual head infiltrometer.

Watch it here—>

Publish More. Work Less. Introducing ZENTRA Cloud

Image of a researcher collecting information from a ZL6 data logger

Researcher is Collecting Data from the ZL6 Data Logger

METER research scientist Dr. Colin Campbell discusses how ZENTRA Cloud data management software simplifies the research process and why researchers can’t afford to live without it.

Watch it here—>

Soil Moisture 101: Need-to-Know Basics

Soil moisture is more than just knowing the amount of water in soil. Learn basic principles you need to know before deciding how to measure it.

Watch it here—>

Soil Moisture 201: Moisture Release Curves—Revealed

Image of rolling hills of farm land

Rolling Hills of Farm Land

A soil moisture release curve is a powerful tool used to predict plant water uptake, deep drainage, runoff, and more.

Watch it here—>

Soil Moisture 301: Hydraulic Conductivity—Why You Need It. How to Measure it.

Image of a researcher measuring with the HYPROP balance

Researcher measuring with the HYPROP balance

If you want to predict how water will move within your soil system, you need to understand hydraulic conductivity because it governs water flow.

Watch it here—>

Soil Moisture 102: Water Content Methods—Demystified

Image of a researcher holding a TEROS 12 in front of a field

Modern Sensing is more than just a Sensor

Dr. Colin Campbell compares measurement theory, the pros and cons of each method, and why modern sensing is about more than just the sensor.

Watch it here—>

Soil Moisture 202: Choosing the Right Water Potential Sensor

Image of a dirt plowed field being used for electrical conductivity

Electrical Conductivity

METER research scientist Leo Rivera discusses how to choose the right field water potential sensor for your application.

Watch it here—>

Water Management: Plant-Water Relations and Atmospheric Demand

Dr. Gaylon Campbell shares his newest insights and explores options for water management beyond soil moisture. Learn the why and how of scheduling irrigation using plant or atmospheric measurements. Understand canopy temperature and its role in detecting water stress in crops. Plus, discover when plant water information is necessary and which measurement(s) to use.

Watch it here—>

How to Improve Irrigation Scheduling Using Soil Moisture

Image of a crop field

Capacitance

Dr. Gaylon Campbell covers the different methods irrigators can use to schedule irrigation and the pros and cons of each.

Watch it here—>

Next up:

Soil Moisture 302: Hydraulic Conductivity—Which Instrument is Right for You?

Image of plants growing out of the sand

Leo Rivera, research scientist at METER teaches which situations require saturated or unsaturated hydraulic conductivity and the pros and cons of common methods.

Watch it here—>

Image of grapes growing off of a tree

Predictable Yields using Remote and Field Monitoring

New data sources offer tools for growers to optimize production in the field. But the task of implementing them is often difficult. Learn how data from soil and space can work together to make the job of irrigation scheduling easier.

Watch it here—>

Learn more

Download “The researcher’s complete guide to soil moisture”

Download “The researcher’s complete guide to water potential