Skip to content

Posts from the ‘Infiltrometer’ Category

Using Pedotransfer Functions to Predict Soil Properties

In this latest chalk talk video, METER soil scientist and application expert, Leo Rivera, discusses the use of pedotransfer functions (PTFs) for predicting soil properties such as hydraulic conductivity and field capacity.

He explains that while direct measurements are ideal, PTFs can provide rapid, cost-effective alternatives. PTFs use soil texture, particle size distribution, and bulk density as inputs, with accuracy depending on the quality of the database and the input data. There are limitations, such as PTFs not accounting for soil structure and organic matter, which can significantly impact hydraulic conductivity, thus, Rivera recommends using PTFs judiciously. PTFs can be especially helpful for large-scale assessments, and he suggests seeking tools that incorporate more parameters for improved accuracy.

Learn more:

Watch our Soil Moisture Master class→

See METER environmental sensors

Video transcript

0:00
Hi. My name is Leo Rivera, and this is a METER Chalk Talk.

0:11
Today I want to talk about a topic that I get asked a lot about, and it has to do with how to predict some of these soil properties that we typically measure. So we often have used tools to measure things like soil hydraulic conductivity, retention curves, predicting field capacity and permanent wilting point. And ideally, that’s the best way we can do it, is by making those measurements. But that’s not always an option. So there are times where we need to be able to more rapidly assess soil properties, where we don’t have the budget to assess some of these more expensive soil properties to measure. And there are tools available to make these predictions rather than making the measurements. And I want to talk about those today to make sure that you understand the capabilities of these tools, that they’re out there, but also understand the limitations. And so the primary tool I’m going to talk about is a pedotransfer function, or a PTF.

So typically, with a pedotransfer function, we’re using something like soil texture. So for example, I have here an image of the soil triangle, and I can say I have a clay loam soil. So I’ve got my clay loam right here. And my goal is to predict field capacity. My goal is to predict field capacity for minus 33 kPa, and permanent wilting point, which is minus 1500 kPa, typically to make those measurements, it’s going to take several days to several months, depending on how you choose to make that measurement. But that’s not always an option. So we can use a petal transfer function to take that property, like soil texture, and predict those values. And pedotransfer functions also can be used to predict things like hydraulic conductivity. So you can see an example of a hydraulic conductivity graph here as well. So a pedotransfer function can be a really powerful tool to predict some of these properties that are typically take more time or more expensive to measure, and maybe you don’t have the time to make those measurements. So it’s really important to understand how a pedotransfer function works before utilizing this tool.

So pedotransfer functions utilize databases, whether it’s soil survey or other generated databases, where you have a lot of soil data, and you have all of these data, like texture, density, where they’ve already measured, hydraulic conductivity and some of these other soil properties. It then takes your input and utilizes that database to best predict what those values are that you’re trying to assess. So if I’m trying to predict, for example, field capacity, you can input parameters like soil texture, particle size distribution and bulk density. And you can do this in various orders. You can use soil texture on its own. You can use particle size distribution on its own, or you can combine particle size distribution and soil bulk density together to make these predictions. And it’s going to go into that database and try and make its best prediction based on the data available on that database.

Your pedotransfer function is only going to be as strong as the data that’s in the database, but it’s also only going to be as powerful as how good of an input you give it to predict these these values. So if we’re using soil texture on its own, as you can imagine, if I was predicting a clay as a soil texture, we’ll just use that as our example. If we look at our clay soil on the on the soil texture triangle, that is a huge range of combinations of sand, silt and clay fraction. So as you can imagine, that’s a pretty broad area that you’re trying to predict from, and there’s a higher potential for error in that prediction. Now, if we were to refine that and use the particle size distribution, so if we knew our exact sand, silt and clay fraction that we were trying to predict, we could then refine our predictions. We’re going to get rid of that circle, and we’re going to refine our prediction, saying, our soil has exactly this amount of sand, silt and clay. And that’s going to refine how the pedotransfer function is pulling those data from in the database to predict those values.

But as we know, soil texture on its own and particle size on its own only tells part of the story. So we can further refine that by adding our bulk density into that prediction, which is going to help improve the prediction of either field capacity or hydraulic conductivity. And in some areas, that should be fine. And so as long as you’re happy with that level of error, that’s fine. But, especially when we’re looking at things like hydraulic conductivity, we know there are other factors that play a big role in hydraulic conductivity, such as soil structure. So ideally, we would be including structure in our prediction, and organic matter in our prediction, because we all we know that these play a significant role in how soil transmits water, but most pedotransfer function, tools like Rosetta and Soil View don’t really take these into account.

So when you’re looking at these values, especially trying to assess measurements like hydraulic conductivity, you need to understand these limitations when using these tools. Now, there are other databases and pedotransfer function tools out there that are doing a better job of taking some of these into account. And if you’re going to use those tools, you want to try to make sure, if you’re if you’re really concerned with the accuracy of your values that you’re using pedotransfer function models that take more of these parameters into account. So the more inputs you can have into your prediction, the more accurate you’re likely going to come out with your predictions of these factors.

I just wanted to cover some of the basics on pedotransfer functions, and if you’re going to use them. They’re really powerful tools if we need to use them, especially when we’re trying to characterize large areas. It’s not always feasible to make measurements across these large areas, and they can help give us a little more data to work off of, rather than just the measurements on their own to try and characterize what’s happening across the large watershed, for example. But we need to understand how our inputs can affect the accuracy of those predictions. If you want to learn more about this or other topics, please visit us on our website www.metergroup.com or on our YouTube channel under meter talk talks and thank you for watching.

Why We Live Or Die By Soil Health

In our latest podcast, Dr. Cristine Morgan, one of the US’s premier soil scientists and Chief Scientific Officer at the Soil Health Institute shares her views on soil health: what it is, how to quantify it, what’s the payoff, and why it’s so critical to our success as a society.

“Our soils support 95 percent of all food production, and by 2060, our soils will be asked to give us as much food as we have consumed in the last 500 years.” (Credit: https://livingsoilfilm.com/)

Her thoughts? “We all live or die by soil, literally. We just have to remind people that it’s about quality of life. It’s about the food that you eat. It’s about the safety and welfare of your children.” 

LISTEN NOW—>

Notes

Dr. Cristine Morgan is the Chief Scientific Officer at the Soil Health Institute in North Carolina. Learn more about the Soil Health Institute on their website. 

Subscribe:

https://www.metergroup.com/we-measure-the-world/

Follow us:

Questions?

Our scientists have decades of experience helping researchers and growers measure the soil-plant-atmosphere continuum. 

Disclaimer

The views and opinions expressed in the podcast and on this posting are those of the individual speakers or authors and do not necessarily reflect or represent the views and opinions held by METER.

Episode 9: Pioneers of Environmental Measurement

What was the life of a scientist like before modern measurement techniques? In our latest podcast, Campbell Scientific’s Ed Swiatek and METER’s Dr. Gaylon Campbell discuss their association with three pioneers of environmental measurement.

Learn what it was like to practice science on the cutting edge. Discover the creative lengths they went to and what crazy things they cobbled together to get the measurements they needed.

Listen now—>

Hydraulic Conductivity: How Many Measurements Do You Need?

Two researchers show easier methods conform to standards

If you’re measuring saturated hydraulic conductivity with a double ring infiltrometer, you’re lucky if you can get two tests done in a day. For most inspectors, researchers, and geotechs—that’s just not feasible. Historically, double ring methods were the standard, however the industry is now more accepting of faster single ring methods with the caveat that enough locations are tested. But how many locations are enough?

Triple the tests you run in a day

Drs. Andrea Welker and Kristin Sample-Lord, researchers at Villanova University, are changing the way infiltration measurements are captured while keeping the standards of measurement high. They ran many infiltration tests with three types of infiltrometers with a variety of sizes and soil types. In this 30-minute webinar, they’ll discuss what they found to be the acceptable statistical mean for a single rain garden. Plus, they’ll reveal the pros and cons of each infiltrometer type and which ones were the most practical to use. Learn:

  • What types of sites were tested
  • How the spot measurements compared with infiltration rates over the whole rain garden
  • Pros and cons of each infiltrometer and how they compared for practicality and ease of use
  • What is an acceptable number of measurements for an accurate assessment

Register now—>

Presenters

Dr. Andrea Welker, PE, F.ASCE, ENV SP, is a Professor of Civil and Environmental Engineering and the Associate Dean for Academic Affairs at Villanova University. She joined Villanova after obtaining her PhD at the University of Texas at Austin. Her research focuses on the geotechnical aspects of stormwater control measures (SCMs) and the effectiveness of SCMs at the site and watershed scale.

Dr. Kristin Sample-Lord, P.E., is an Assistant Professor of geotechnical and geoenvironmental engineering in the Civil and Environmental Engineering Department at Villanova University. She received her PhD and MS from Colorado State University. Her research includes measurement of flow and transport in soils, with specific focus on green infrastructure and hydraulic containment barriers.

Related article: How to measure soil hydraulic conductivity
Related article: Which grain size analysis method is right for you?

Soil Hydraulic Properties—8 Ways You Can Unknowingly Compromise Your Data

Avoid costly surprises

Measuring soil hydraulic properties like hydraulic conductivity and soil water retention curves is difficult to do correctly. Measurements are affected by spatial variability, land use, sample prep, and more.

Image of a research using the SATURO infiltrometer in the field
Leo Rivera teaches soil hydraulic properties measurement best practices

Getting the right number is like building a house of cards. If one thing goes wrong—you wind up with measurements that don’t truly represent field conditions. Once your data are skewed in the wrong direction, your predictions are off, and erroneous recommendations or decisions could end up costing you a ton of time and money. 

Get the right numbers—every time

For 10 years, METER research scientist, Leo Rivera, has helped thousands of customers make saturated and unsaturated hydraulic conductivity measurements and retention curves to accurately understand their unique soil hydraulic properties. In this 30-minute webinar, he’ll explain common mistakes to avoid and best practices that will save you time, increase your accuracy, and prevent problems that could reduce the quality of your data. Learn:

  • Sample collection best practices
  • Where to make your measurements
  • How many measurements you need
  • Field mapping tools
  • How to get more out of your instruments
  • How to use the LABROS suite to fully characterize soils (i.e., full retention curves and hydraulic conductivity curves)
  • Best practices for measuring field hydraulic conductivity using SATURO

Watch it now—>

Best of 2019: Environmental Biophysics

In case you missed them, here are our most popular educational webinars of 2019. Watch any or all of them at your convenience.

Lab vs. In Situ Water Characteristic Curves

Image of a researcher running hand across wheat

Researcher Running A Hand Across Wheat

Lab-produced soil water retention curves can be paired with information from in situ moisture release curves for deeper insight into real-world variability.

Watch it here—>

Hydrology 101: The Science Behind the SATURO Infiltrometer

Image of a fallen tree being supported off the ground by many other trees

A Forest With Fallen Trees

Dr. Gaylon S. Campbell teaches the basics of hydraulic conductivity and the science behind the SATURO automated dual head infiltrometer.

Watch it here—>

Publish More. Work Less. Introducing ZENTRA Cloud

Image of a researcher collecting information from a ZL6 data logger

Researcher is Collecting Data from the ZL6 Data Logger

METER research scientist Dr. Colin Campbell discusses how ZENTRA Cloud data management software simplifies the research process and why researchers can’t afford to live without it.

Watch it here—>

Soil Moisture 101: Need-to-Know Basics

Soil moisture is more than just knowing the amount of water in soil. Learn basic principles you need to know before deciding how to measure it.

Watch it here—>

Soil Moisture 201: Moisture Release Curves—Revealed

Image of rolling hills of farm land

Rolling Hills of Farm Land

A soil moisture release curve is a powerful tool used to predict plant water uptake, deep drainage, runoff, and more.

Watch it here—>

Soil Moisture 301: Hydraulic Conductivity—Why You Need It. How to Measure it.

Image of a researcher measuring with the HYPROP balance

Researcher measuring with the HYPROP balance

If you want to predict how water will move within your soil system, you need to understand hydraulic conductivity because it governs water flow.

Watch it here—>

Soil Moisture 102: Water Content Methods—Demystified

Image of a researcher holding a TEROS 12 in front of a field

Modern Sensing is more than just a Sensor

Dr. Colin Campbell compares measurement theory, the pros and cons of each method, and why modern sensing is about more than just the sensor.

Watch it here—>

Soil Moisture 202: Choosing the Right Water Potential Sensor

Image of a dirt plowed field being used for electrical conductivity

Electrical Conductivity

METER research scientist Leo Rivera discusses how to choose the right field water potential sensor for your application.

Watch it here—>

Water Management: Plant-Water Relations and Atmospheric Demand

Dr. Gaylon Campbell shares his newest insights and explores options for water management beyond soil moisture. Learn the why and how of scheduling irrigation using plant or atmospheric measurements. Understand canopy temperature and its role in detecting water stress in crops. Plus, discover when plant water information is necessary and which measurement(s) to use.

Watch it here—>

How to Improve Irrigation Scheduling Using Soil Moisture

Image of a crop field

Capacitance

Dr. Gaylon Campbell covers the different methods irrigators can use to schedule irrigation and the pros and cons of each.

Watch it here—>

Next up:

Soil Moisture 302: Hydraulic Conductivity—Which Instrument is Right for You?

Image of plants growing out of the sand

Leo Rivera, research scientist at METER teaches which situations require saturated or unsaturated hydraulic conductivity and the pros and cons of common methods.

Watch it here—>

Image of grapes growing off of a tree

Predictable Yields using Remote and Field Monitoring

New data sources offer tools for growers to optimize production in the field. But the task of implementing them is often difficult. Learn how data from soil and space can work together to make the job of irrigation scheduling easier.

Watch it here—>

Learn more

Download “The researcher’s complete guide to soil moisture”

Download “The researcher’s complete guide to water potential

Soil Moisture 301—Hydraulic Conductivity Why you need it. How to measure it.

New Live Webinar

Hydraulic conductivity, or the ability of a soil to transmit water, is critical to understanding the complete water balance.

Researcher running hand over wheat
Soil hydraulic conductivity impacts almost every soil application.

In fact, if you’re trying to model the fate of water in your system and simply estimating parameters like conductivity, you could get orders of magnitude errors in your projections. It would be like searching in the dark for a moving target. If you want to understand how water will move across and within your soil system, you need to understand hydraulic conductivity because it governs water flow.

Get the complete soil picture

Hydraulic conductivity impacts almost every soil application: crop production, irrigation, drainage, hydrology in both urban and native lands, landfill performance, stormwater system design, aquifer recharge, runoff during flooding, soil erosion, climate models, and even soil health. In this 20-minute webinar, METER research scientist, Leo Rivera discusses how to better understand water movement through soil. Discover:

  • Saturated and unsaturated hydraulic conductivity—What are they?
  • Why you need to measure hydraulic conductivity
  • Measurement methods for the lab and the field
  • What hydraulic conductivity can tell you about the fate of water in your system

Date: August 20, 2019 at 9:00 am – 10:00 am Pacific Time

See the live webinar

REGISTER

Can’t wait for the webinar? See a comparison of common measurement methods, and decide which soil hydraulic conductivity method is right for your application. Read the article.

Download the “Researcher’s complete guide to water potential”—>

Download the “Researcher’s complete guide to soil moisture”—>

Double Ring vs. SATURO: Two Infiltrometers Go Head to Head

The SATURO and the double-ring infiltrometer are both ring infiltrometers that infiltrate water from the surface into soils. Overall, they compare fairly well (see comparison). The main difference is how they deal with three-dimensional flow in the Kfs calculation. The SATURO uses the multiple-ponded head analysis approach to get a more direct estimation of alpha, which is used to determine how the soil pulls the water laterally. The double-ring infiltrometer uses a larger outer ring to act as a buffer from three-dimensional flow. This requires more water, and literature suggests that it doesn’t perform well. Also, with a double-ring infiltrometer, there is still a need to estimate alpha in the equations. This is typically done from a look-up table based on soil type and often results in error.

SATURO Infiltrometer which uses multiple-ponded head analysis approach

The SATURO is an automated infiltrometer which uses the multiple-ponded head analysis approach.

How do SATURO readings compare to double-ring infiltrometer readings?

We compared the SATURO with a 6-inch (15.24 cm) inner ring diameter against a double-ring infiltrometer with a 6-inch (15.24 cm) inner ring diameter and an outer ring with a 12-inch (30.48 cm) diameter.

Hydrology 301: What a Hydraulic Conductivity Curve Tells You & More

Hydraulic conductivity is the ability of a porous medium (soil for instance) to transmit water in saturated or nearly saturated conditions. It’s dependent on several factors: size distribution, roughness, tortuosity, shape, and degree of interconnection of water-conducting pores. A hydraulic conductivity curve tells you, at a given water potential, the ability of the soil to conduct water.

Researcher measuring with the HYPROP balance

One factor that affects hydraulic conductivity is how strong the structure is in the soil you’re measuring.

For example, as the soil dries, what is the ability of water to go from the top of a sample [or soil layer in the field] to the bottom. These curves are used in modeling to illustrate or predict what will happen to water moving in a soil system during fluctuating moisture conditions. Researchers can combine hydraulic conductivity data from two laboratory instruments, the KSAT and the HYPROP, to produce a full hydraulic conductivity curve (Figure 1).

Hydraulic conductivity curve

Figure 1. Example of hydraulic conductivity curves for three different soil types. The curves go from field saturation on the right to unsaturated hydraulic conductivity on the left.  They illustrate the difference between a well-structured clayey soil to a poorly structured clayey soil and the importance of structure to hydraulic conductivity especially at, or near, saturation.

In Hydrology 301, Leo Rivera, Research Scientist at METER, discusses hydraulic conductivity and the advantages and disadvantages of methods used to measure it.

Watch the webinar below.

 

Get more info on applied environmental research in our

Download the “Researcher’s complete guide to water potential”—>

Download the “Researcher’s complete guide to soil moisture”—>

New Infiltrometer Helps City of Pittsburgh Limit Traditional Stormwater Infrastructure (Part 2)

To save the aesthetics of Dellrose Street, an aging, 900 ft. long, brick road, the city of Pittsburgh wanted to limit traditional stormwater infrastructure (see part 1). Jason Borne, a stormwater engineer for ms consultants and his team decided permeable pavers was a viable option, and used two different types of infiltrometers to determine soil infiltration potential.  Here’s how they compared.

Looking down the street where researchers are doing their installation

Setting up the infiltrometers.

Shortened Test Times Allow Design Changes on the Fly

Though most of the subsoil was a clay urban fill, there was a distinct transition between that clay material to a broken shale/clay mixture.  Borne says, “After excavation, it rained, and we saw that the water was disappearing through the broken shale/clay material.  When we did the infiltration tests, the broken shale/clay showed a higher infiltration potential than the clay fill material.  That led us to modify the design of the subsurface flow barriers based on specific observed infiltration rates of the subsoils. Where the tests showed higher hydraulic conductivity values, we were able to rely on infiltration entirely to remove the water from behind the check dams.”  Borne adds that in the areas where infiltration was poor, they augmented infiltration with a slow release concept. “We put some weep holes in the flow barrier and let the water trickle out down to the next barrier and so on.  Basically, the automated SATURO infiltrometer allowed us to do many tests in a short amount of time to establish a threshold of where good infiltrating soils and poor infiltrating soils were located.  This enabled us to change the design on the fly.  The double ring infiltrometer takes significantly more time to do a test, and time is of the essence when the contractor wants to backfill the area and get things moving. It was nice to have a tool that got us the information we needed more rapidly.”

Image of a SATURO double ring infiltrometer

SATURO Infiltrometer

How did the Double Ring and SATURO Compare?

Borne says the SATURO Infiltrometer was faster and reduced the possibility of human error.  He adds, “We liked the idea of it being very standardized. The automated plot of flux over time was also of great interest to us, because we could see a trend, or anomalies that might invalidate the results we were getting. The double ring infiltrometer takes a long time to achieve a state of equilibrium, and it’s hard to know when that occurs. You’re following the Pennsylvania Department of Environmental Protection suggested guidelines, but they’re very generalized.  To me it doesn’t suit all situations.  What we found with the SATURO infiltrometer is it records information at very discreet intervals, plots a curve of the flux over time, and when it levels out, you basically achieve equilibrium.  You get to that state of equilibrium faster.  There’s a water savings, but there’s also a time savings.  And there’s the satisfaction of getting standardized results rather than the possibility of each technician applying the principles in a slightly different way, as they might with the double ring infiltrometer.”

Borne and his team were ultimately able to prepare a permeable paver street design which allowed for the exclusion of traditional storm sewer infrastructure, reducing both capital costs and long-term maintenance life cycle costs. The permeable paver concept is intended to provide a template for the city of Pittsburgh to apply to the future reconstruction of other city streets.

Download the “Researcher’s complete guide to soil moisture”—>

Get more information on applied environmental research in our