Skip to content

Posts from the ‘Hydrology’ Category

Soil Moisture 301—Hydraulic Conductivity Why you need it. How to measure it.

New Live Webinar

Hydraulic conductivity, or the ability of a soil to transmit water, is critical to understanding the complete water balance.

Researcher running hand over wheat
Soil hydraulic conductivity impacts almost every soil application.

In fact, if you’re trying to model the fate of water in your system and simply estimating parameters like conductivity, you could get orders of magnitude errors in your projections. It would be like searching in the dark for a moving target. If you want to understand how water will move across and within your soil system, you need to understand hydraulic conductivity because it governs water flow.

Get the complete soil picture

Hydraulic conductivity impacts almost every soil application: crop production, irrigation, drainage, hydrology in both urban and native lands, landfill performance, stormwater system design, aquifer recharge, runoff during flooding, soil erosion, climate models, and even soil health. In this 20-minute webinar, METER research scientist, Leo Rivera discusses how to better understand water movement through soil. Discover:

  • Saturated and unsaturated hydraulic conductivity—What are they?
  • Why you need to measure hydraulic conductivity
  • Measurement methods for the lab and the field
  • What hydraulic conductivity can tell you about the fate of water in your system

Date: August 20, 2019 at 9:00 am – 10:00 am Pacific Time

See the live webinar

REGISTER

Can’t wait for the webinar? See a comparison of common measurement methods, and decide which soil hydraulic conductivity method is right for your application. Read the article.

Download the “Researcher’s complete guide to water potential”—>

Download the “Researcher’s complete guide to soil moisture”—>

Engineers Without Borders alleviates Panamanian village water security issues

Engineers Without Borders (EWB) at Washington State University in Pullman, WA has partnered with a small indigenous village located in the Comarca Ngäbe-Buglé region of Panama. The relationship between this village and EWB at WSU began in 2016 when WSU alumna Destry Seiler began living in the village as a Peace Corps volunteer hoping to help solve the community’s water security needs.

A picture of Comarca Ngäbe-Buglé region photo taken from a small village in Panama

A view of the Comarca Ngäbe-Buglé taken from the village in Panama.

During the rainy season in this village, approximately 20 households have access to water through a two-inch PVC pipe that operates by gravity. It runs approximately 1.5 kilometers through the jungle from a spring source higher in the mountain to small hose spickets located close to the homes on the distribution line. The other ~80 households do not have access to the distribution line and walk to the closest river or creek up to five times a day to find water. However, during the dry season, most spring sources dry up, leaving all households in the community to walk to the diminished supply of rivers to find their water.

Water line supplying 20 village homes with water during the rainy season

A view of the water line currently serving ~20 homes in the village during the rainy season.

The village initially requested assistance from the Peace Corps in order to find a year-round source of clean water. But, after living in the village for 1.5 years, Ms. Seiler could not locate spring sources that both survived through the dry season and could also reach the homes in need through a gravity fed system.

Then Ms. Seiler began thinking of groundwater as a possible new water source for the community. Unfortunately, groundwater data for the Comarca Ngäbe-Buglé was not available from the local government agency. So she decided to reach out to WSU professor, Dr. Karl Olsen, to ask for assistance with a groundwater research project, and the EWB club was formed.

The club visited the village for the first time along with Ms. Seiler and faculty mentor Dr. Karl Olsen in August 2018 to do an initial survey of water use and needs, as well as to create a first-ever map of the area. EWB will return to Panama this June 2019 to implement a solar-powered water pump requested by a section of the community to deliver water from a spring source to approximately 20 homes on the nearest ridgeline. The club will also install latrines in a nearby community. They will continue the groundwater survey of the area through more extensive mapping and perform a more advanced analysis with the support of a local hydrologic company.

EWB members and WSU students next to the village sign

EWB members and WSU students Patrick Roubicaud, Kristy Watson, Destry Seiler, Perri Piller, Rene McMinn, and Kevin Allen during their visit to Panama, August 2018.

The team will use a METER-donated ATMOS 41 weather station along with a ZL6 data logger and ZENTRA Cloud software to assist in the data collection necessary to begin mapping groundwater in the area. The weather station will record precipitation, solar radiation, vapor pressure, temperature, wind, and relative humidity data that will enable EWB to begin to quantify environmental conditions and available water supply. When combined with streamflow data from rivers in the area, groundwater availability can also begin to be estimated. Because of ZENTRA Cloud, EWB will be able to view this information near-real time as well as share it with the village to help guide their design decisions. EWB plans to install the ATMOS 41 at a nearby village school to ensure weather station security and to provide an opportunity for local students to learn about their surrounding environment in a way they have not been able to do before.

To learn more about the Panamanian village or the work EWB from WSU is doing, visit ewb.wsu.edu.

See weather sensor performance data for the ATMOS 41 weather station.

Explore which weather station is right for you.

Download the “Researcher’s complete guide to soil moisture”—>

Download the “Researcher’s complete guide to water potential”—>

What’s next for Fukushima?

Shortly after the Fukushima disaster, we donated environmental sensors to Dr. Masaru Mizoguchi, a scientist colleague at the University of Tokyo, to help him contrive a more environmentally friendly method to rid rice fields in the villages near Fukushima of the radioactive isotope cesium 137.

Fukushima rice patties

Scientists continue to search for ways to prevent the recontamination of the rice paddies.

Since then, his efforts, along with the efforts of a team of scientists and citizens, have made the rice grown in the paddies near the disaster site safe for human consumption. But questions and challenges remain. For instance, what will happen to the contaminated soil surrounding the decontaminated area? Will it settle in nearby stream beds, eventually contaminating the rice paddies? And what kind of erosion will come from the nearby tree-covered and clearcut hillslopes?

Recently, our scientists and videographers visited the villages near Fukushima to film some of the progress being made. Watch the video, and read the full story here.

See performance data for the ATMOS 41 weather station used in Fukushima research.

Download the “Researcher’s complete guide to soil moisture”—>

Download the “Researcher’s complete guide to water potential”—>

Double Ring vs. SATURO: Two Infiltrometers Go Head to Head

The SATURO and the double-ring infiltrometer are both ring infiltrometers that infiltrate water from the surface into soils. Overall, they compare fairly well (see comparison). The main difference is how they deal with three-dimensional flow in the Kfs calculation. The SATURO uses the multiple-ponded head analysis approach to get a more direct estimation of alpha, which is used to determine how the soil pulls the water laterally. The double-ring infiltrometer uses a larger outer ring to act as a buffer from three-dimensional flow. This requires more water, and literature suggests that it doesn’t perform well. Also, with a double-ring infiltrometer, there is still a need to estimate alpha in the equations. This is typically done from a look-up table based on soil type and often results in error.

SATURO Infiltrometer which uses multiple-ponded head analysis approach

The SATURO is an automated infiltrometer which uses the multiple-ponded head analysis approach.

How do SATURO readings compare to double-ring infiltrometer readings?

We compared the SATURO with a 6-inch (15.24 cm) inner ring diameter against a double-ring infiltrometer with a 6-inch (15.24 cm) inner ring diameter and an outer ring with a 12-inch (30.48 cm) diameter.

Hydrology 301: What a Hydraulic Conductivity Curve Tells You & More

Hydraulic conductivity is the ability of a porous medium (soil for instance) to transmit water in saturated or nearly saturated conditions. It’s dependent on several factors: size distribution, roughness, tortuosity, shape, and degree of interconnection of water-conducting pores. A hydraulic conductivity curve tells you, at a given water potential, the ability of the soil to conduct water.

Researcher measuring with the HYPROP balance

One factor that affects hydraulic conductivity is how strong the structure is in the soil you’re measuring.

For example, as the soil dries, what is the ability of water to go from the top of a sample [or soil layer in the field] to the bottom. These curves are used in modeling to illustrate or predict what will happen to water moving in a soil system during fluctuating moisture conditions. Researchers can combine hydraulic conductivity data from two laboratory instruments, the KSAT and the HYPROP, to produce a full hydraulic conductivity curve (Figure 1).

Hydraulic conductivity curve

Figure 1. Example of hydraulic conductivity curves for three different soil types. The curves go from field saturation on the right to unsaturated hydraulic conductivity on the left.  They illustrate the difference between a well-structured clayey soil to a poorly structured clayey soil and the importance of structure to hydraulic conductivity especially at, or near, saturation.

In Hydrology 301, Leo Rivera, Research Scientist at METER, discusses hydraulic conductivity and the advantages and disadvantages of methods used to measure it.

Watch the webinar below.

 

Get more info on applied environmental research in our

Download the “Researcher’s complete guide to water potential”—>

Download the “Researcher’s complete guide to soil moisture”—>

Lab versus in situ soil water characteristic curves—a comparison

The HYPROP and WP4C enable fast, accurate soil moisture release curves (soil water characteristic curves-SWCCs), but lab measurements have some limitations: sample throughput limits the number of curves that can be produced, and curves generated in a laboratory do not represent their in situ behavior. Lab-produced soil water retention curves can be paired with information from in situ moisture release curves for deeper insight into real-world variability.

Tractor moving soil around

Soil water characteristic curves help determine soil type, soil hydraulic properties, and mechanical performance and stability

Moisture release curves in the field? Yes, it’s possible.

Colocating water potential sensors and soil moisture sensors in situ add many more moisture release curves to a researcher’s knowledge base. And, since it is primarily the in-place performance of unsaturated soils that is the chief concern to geotechnical engineers and irrigation scientists, adding in situ measurements to lab-produced curves would be ideal.

In this brief 20-minute webinar, Dr. Colin Campbell, METER research scientist, summarizes a recent paper given at the Pan American Conference of Unsaturated Soils. The paper, “Comparing in situ soil water characteristic curves to those generated in the lab” by Campbell et al. (2018), illustrates how well in situ generated SWCCs using the TEROS 21 calibrated matric potential sensor and METER’s GS3 water content sensor compare to those created in the lab.

Watch the webinar below:

&nbsp

Download the “Researcher’s complete guide to water potential”—>

Download the “Researcher’s complete guide to soil moisture”—>

Lab vs. field instruments—when to use both

Whether researchers measure soil hydraulic properties in the lab or in the field, they’re only getting part of the picture. Laboratory systems are highly accurate due to controlled conditions, but lab measurements don’t take into account site variability such as roots, cracks, or wormholes that might affect soil hydrology. In addition, when researchers take a sample from the field to the lab, they often compress soil macropores during the sampling process, altering the hydraulic properties of the soil.

Tree roots with moss covering them

Roots, cracks, and wormholes all affect soil hydrology

Field experiments help researchers understand variability and real-time conditions, but they have the opposite set of problems. The field is an uncontrolled system. Water moves through the soil profile by evaporation, plant uptake, capillary rise, or deep drainage, requiring many measurements at different depths and locations. Field researchers also have to deal with the unpredictability of the weather. Precipitation may cause a field drydown experiment to take an entire summer, whereas in the lab it takes only a week.

The big picture—supersized

Researchers who use both lab and field techniques while understanding each method’s strengths and limitations can exponentially increase their understanding of what’s happening in the soil profile. For example, in the laboratory, a researcher might use the PARIO soil texture analyzer to obtain accurate soil texture data, including a complete particle size distribution. They could then combine those data with an HYPROP-generated soil moisture release curve to understand the hydraulic properties of that soil type. If that researcher then adds high-quality field data in order to understand real-world field conditions, then suddenly they’re seeing the larger picture.

Lab and field instrument strengths and limitations

Table 1. Lab and field instrument strengths and limitations

Below is an exploration of lab versus field instrumentation and how researchers can combine these instruments for an increased understanding of their soil profile. Click the links for more in-depth information about each topic.

Particle size distribution and why it matters

Soil type and particle size analysis are the first window into the soil and its unique characteristics. Every researcher should identify the type of soil that they’re working with in order to benchmark their data.

Researcher holding a sprouting seedling in their hands

Particle size analysis defines the percentage of coarse to fine material that makes up a soil

If researchers don’t understand their soil type, they can’t make assumptions about the state of soil water based on soil moisture (i.e., if they work with plants, they won’t be able to predict whether there will be plant available water). In addition, differing soil types in the soil’s horizons may influence a researcher’s measurement selection, sensor choice, and sensor placement.

Read more

Download the “Researcher’s complete guide to soil moisture”—>

Top Five Blog Posts in 2017

In case you missed them the first time around, here are the most popular Environmental Biophysics.org blog posts in 2017.

Soil Moisture Sensors: Why TDR vs. Capacitance May Be Missing the Point

Researcher holding a soil sensor in front of a field

Soil moisture sensor

Time Domain Reflectometry (TDR) vs. capacitance is a common question for scientists who want to measure volumetric water content (VWC) of soil, but is it the right question?  Dr. Colin S. Campbell, soil scientist, explains some of the history and technology behind TDR vs. capacitance and the most important questions scientists need to ask before investing in a sensor system. Read more

Get More From your NDVI Sensor

Looking up at tree branches from the ground

Modern technology has made it possible to sample Normalized Difference Vegetation Index (NDVI) across a range of scales both in space and in time, from satellites sampling the entire earth’s surface to handheld small sensors that measure individual plants or even leaves.  Read more

Improved Methods Save Money in Future Borehole Thermal Energy Storage Design

Image of a city with many buildings

Globally, the gap between the energy production and consumption is growing wider. To promote sustainability, University of California San Diego PhD candidate and ASCE GI Sustainability in Geotechnical Engineering committee member, Tugce Baser, Dr. John McCartney, Associate Professor, and their research team, Dr. Ning Lu, Professor at Colorado School of Mines and Dr. Yi Dong, Postdoctoral Researcher at Colorado School of Mines, are working on improving methods for borehole thermal energy storage (BTES), a system which stores solar heat in the soil during the summer months for reuse in homes during the winter. Read more

New Weather Station Technology in Africa

Happy students gathered around an ATMOS 41 weather station

Weather data, used for flight safety, disaster relief, crop and property insurance, and emergency services, contributes over $30 billion in direct value to U.S. consumers annually. Since the 1990’s in Africa, however, there’s been a consistent decline in the availability of weather observations. Read more

Electrical Conductivity of Soil as a Predictor of Plant Response

Corn stalks looking up at the sky from the ground

Plants require nutrients to grow, and if we fail to supply the proper nutrients in the proper concentrations, plant function is affected. Fertilizer in too high concentration can also affect plant function, and sometimes is fatal.  Read more

And our three most popular blogs of all time:

Estimating Relative Humidity in Soil: How to Stop Doing it Wrong

Image of a tree in the desert

Estimating the relative humidity in soil?  Most people do it wrong…every time.  Dr. Gaylon S. Campbell shares a lesson on how to correctly estimate soil relative humidity from his new book, Soil Physics with Python, which he recently co-authored with Dr. Marco Bittelli.  Read more

How to Measure Water Potential

Plants sprouting out of the sand

In the conclusion of our three-part water potential series, we discuss how to measure water potential—different methods, their strengths, and their limitations. Read more

Do the Standards for Field Capacity and Permanent Wilting Point Need to be Reexamined?

Image of rolling fields in front of mountains

We were inspired by this Freakonomics podcast, which highlights the bookThis Idea Must Die: Scientific Problems that are Blocking Progress, to come up with our own answers to the question:  Which scientific ideas are ready for retirement?  We asked scientist, Dr. Gaylon S. Campbell, which scientific idea he thinks impedes progress.  Here’s what he had to say about the standards for field capacity and permanent wilting point. Read more

Get info on applied environmental research in our

See weather sensor performance data for the ATMOS 41 weather station.

Explore which weather station is right for you.

Download the “Researcher’s complete guide to soil moisture”—>

New Infiltrometer Helps City of Pittsburgh Limit Traditional Stormwater Infrastructure (Part 2)

To save the aesthetics of Dellrose Street, an aging, 900 ft. long, brick road, the city of Pittsburgh wanted to limit traditional stormwater infrastructure (see part 1). Jason Borne, a stormwater engineer for ms consultants and his team decided permeable pavers was a viable option, and used two different types of infiltrometers to determine soil infiltration potential.  Here’s how they compared.

Looking down the street where researchers are doing their installation

Setting up the infiltrometers.

Shortened Test Times Allow Design Changes on the Fly

Though most of the subsoil was a clay urban fill, there was a distinct transition between that clay material to a broken shale/clay mixture.  Borne says, “After excavation, it rained, and we saw that the water was disappearing through the broken shale/clay material.  When we did the infiltration tests, the broken shale/clay showed a higher infiltration potential than the clay fill material.  That led us to modify the design of the subsurface flow barriers based on specific observed infiltration rates of the subsoils. Where the tests showed higher hydraulic conductivity values, we were able to rely on infiltration entirely to remove the water from behind the check dams.”  Borne adds that in the areas where infiltration was poor, they augmented infiltration with a slow release concept. “We put some weep holes in the flow barrier and let the water trickle out down to the next barrier and so on.  Basically, the automated SATURO infiltrometer allowed us to do many tests in a short amount of time to establish a threshold of where good infiltrating soils and poor infiltrating soils were located.  This enabled us to change the design on the fly.  The double ring infiltrometer takes significantly more time to do a test, and time is of the essence when the contractor wants to backfill the area and get things moving. It was nice to have a tool that got us the information we needed more rapidly.”

Image of a SATURO double ring infiltrometer

SATURO Infiltrometer

How did the Double Ring and SATURO Compare?

Borne says the SATURO Infiltrometer was faster and reduced the possibility of human error.  He adds, “We liked the idea of it being very standardized. The automated plot of flux over time was also of great interest to us, because we could see a trend, or anomalies that might invalidate the results we were getting. The double ring infiltrometer takes a long time to achieve a state of equilibrium, and it’s hard to know when that occurs. You’re following the Pennsylvania Department of Environmental Protection suggested guidelines, but they’re very generalized.  To me it doesn’t suit all situations.  What we found with the SATURO infiltrometer is it records information at very discreet intervals, plots a curve of the flux over time, and when it levels out, you basically achieve equilibrium.  You get to that state of equilibrium faster.  There’s a water savings, but there’s also a time savings.  And there’s the satisfaction of getting standardized results rather than the possibility of each technician applying the principles in a slightly different way, as they might with the double ring infiltrometer.”

Borne and his team were ultimately able to prepare a permeable paver street design which allowed for the exclusion of traditional storm sewer infrastructure, reducing both capital costs and long-term maintenance life cycle costs. The permeable paver concept is intended to provide a template for the city of Pittsburgh to apply to the future reconstruction of other city streets.

Download the “Researcher’s complete guide to soil moisture”—>

Get more information on applied environmental research in our

New Infiltrometer Helps City of Pittsburgh Limit Traditional Stormwater Infrastructure

Though difficult and expensive to restore, the brick-paved streets that still exist in some Pennsylvania neighborhoods are a treasure worth preserving, according to the City of Pittsburgh. Dellrose Street, an aging, 900 ft. long, brick road, was in need of repair, but the city of Pittsburgh wanted to limit traditional stormwater infrastructure, such as pipes and catch basins.

Pennsylvania brick road

Dellrose Street permeable paver system

To save the aesthetics of the neighborhood, they hired ms consultants, inc. to design a permeable paver solution for controlling stormwater runoff volumes and peak runoff rates that would traditionally be routed off-site via storm sewers.  Jason Borne, a stormwater engineer for ms consultants who worked on the project says, “What we try to do is understand the in situ infiltration potential of the subsoils to determine the most efficient natural processes for attenuating flows; either through infiltrating excess water volume back into the soil or through slow-release off-site.”  He used the SATURO Infiltrometer to get an idea of how urban fill material would infiltrate water.

Green Infrastructure Aids Natural Infiltration

As Borne and his team investigated what they could do to slow down the runoff, they decided permeable pavers would be a viable solution.  He says, “There’s not much you can do once you put in a hardened surface like a pavement.  Traditional pavement surfaces accelerate the runoff which requires catch basins and large diameter pipes to carry the runoff off-site. We were interested in investigating what some of the urban subsoils or urban fill would allow us to do from an infiltration perspective.  As we started looking at some of these subsoils, we decided a permeable paver system would be ideal for this particular street.”

Researchers install a subsurface flow barrier

Subsurface flow barrier installation

Infiltrometers Determine Natural Infiltration Potential

Once the water flowed into the aggregate, the team began to figure out ways to slow it down and promote infiltration.  Borne says, “Basically we came up with a tiered subsurface flow barrier system.  We had about 60 concrete flow barriers across the subgrade within the aggregate base of the road. We needed so many because the longitudinal slope of the road was fairly significant. Behind each of these barriers we stored a portion of the stormwater that would typically run off the site.  The ideal was to remove the stored water through infiltration—to get it down to the subgrade and away, so we used infiltrometers to help us establish where we could maximize infiltration and where we might need to rely on other management methods.”

A Need for Faster Test Times Inspires a Comparison

Borne says that USDA soil surveys are too generalized for green infrastructure applications in urban areas and only give crude approximations of the soil hydraulic conductivity. Understanding the best way to promote natural infiltration requires a very specific infiltration rate or hydraulic conductivity for the location of interest.  He says, “The goal is to excavate down to the desired elevation before construction and find out, through some kind of device what the infiltration potential of the subsoil is.  Typically we use a double ring infiltrometer, but it’s a very manual device. We’re constantly refilling water, and it requires us to be on-site and attentive to what’s happening.  We can’t really multitask, especially in areas of decently infiltrating soils where the device might run out of water in 30 minutes or less. So, in the interest of saving water and time, we used the automated SATURO infiltrometer and the manual double ring infiltrometer concurrently for comparison purposes.”

Next week:  Find out how the two infiltrometers compared.

Download the “Researcher’s complete guide to soil moisture”—>

Get more information on applied environmental research in our