Skip to content

Posts from the ‘Electrical conductivity’ Category

How to analyze soil moisture data

CONTRIBUTORS

You’ve buried soil water content and water potential sensors in the ground, installed an ATMOS 41 in the field, and set up your ZL6 data logger. Your network of instruments has been collecting data for days, weeks, or even all season. Now what? Performing soil moisture data analysis for your research location is one thing. Knowing how to extrapolate meaningful inferences and conclusions to understand what is happening and troubleshoot issues is completely different.

In this article, we will step through multiple data sets to understand how soil water content, soil temperature, soil water potential, and atmospheric measurements can be used to discover the meaning behind the traces. Within this article you will learn how to identify the following events in your data:

  • Behavior of soil moisture sensors in different soil types
  • Infiltration
  • Flooding
  • Soil cracking
  • Freezing
  • Spatial variability
  • Temperature effects
  • Diurnal patterns due to hydraulic redistribution
  • Broken sensors
  • Installation problems

Each example will be represented by a graph. It is not necessary to understand every aspect of information within these graphs. Each one is used as an illustration of common soil moisture data patterns you might run into and how to extrapolate the most useful information possible from the patterns seen. Each graph will have a box in the upper right-hand side corner with the soil type and crop type so you have a better understanding of the variables at play.

All of the data provided was collected by data loggers, such as our ZL6 series, and uploaded to ZENTRA Cloud for remote viewing at the convenience of the user. All data sets are either from METER’s own instrumentation or are supplied by the data owner and are included with their permission.

A photograph of a ZL6 next to a tablet showing ZENTRA Cloud data
Figure 1. ZL6 Basic data logger with data collected and stored within the ZENTRA Cloud platform
Effects of soil types
A graph showing water content and water potential measurements for a turf grass in loamy sand in wet conditions
Figure 2. Water content and water potential measurements for a turf grass in loamy sand in wet conditions

In Figure 2 we see the data from an engineered loamy sand with a cover crop of turf grass. Our goal when executing our experiments in this example was to improve irrigation in turf grass. This grass had a fairly shallow root zone, the middle of which was about six cm deep and the bottom at about 10 cm. Over time, this example showed first relatively wet conditions to start through June and July, a fixed drying period condition in July and August, and drying until the cessation of water uptake in August and September.

This graph shows two soil moisture data types: volumetric water content on the left y-axis and matric potential, or water potential, on the right y-axis. Time is on the x-axis ranging from early summer to the start of fall. To understand what these data clusters can tell us, we must look at each data set individually.

Read the full article

Episode 9: Pioneers of Environmental Measurement

What was the life of a scientist like before modern measurement techniques? In our latest podcast, Campbell Scientific’s Ed Swiatek and METER’s Dr. Gaylon Campbell discuss their association with three pioneers of environmental measurement.

Learn what it was like to practice science on the cutting edge. Discover the creative lengths they went to and what crazy things they cobbled together to get the measurements they needed.

Listen now—>

Soil Electrical Conductivity: Managing Salts for Sustained High Yields

Managing salts: Why you should care more

Mismanagement of salt applied during irrigation ultimately reduces production—drastically in many cases. Irrigating incorrectly also increases water cost and the energy used to apply it.

Understanding the salt balance in the soil and knowing the leaching fraction, or the amount of extra irrigation water that must be applied to maintain acceptable root zone salinity is critical to every irrigation manager’s success. Yet monitoring soil salinity is often poorly understood.

Measure EC for consistently high crop yields

In this webinar, world-renowned soil physicist Dr. Gaylon Campbell teaches the fundamentals of measuring soil electrical conductivity (EC) and how to use a tool that few people think about—but is absolutely essential for maintaining crop yield and profit. Learn:

  • The sources of salt in irrigated agriculture
  • How and why salt affects plants
  • How salt in soil is measured
  • How common measurements are related to the amount of salt in soil
  • How salt affects various plant species
  • How to perform the calculations needed to know how much water to apply for a given water quality

Register now—>

Presenter

Dr. Gaylon S. Campbell has been a research scientist and engineer at METER for over 20 years, following nearly 30 years on faculty at Washington State University. Dr. Campbell’s first experience with environmental measurement came in the lab of Sterling Taylor at Utah State University making water potential measurements to understand plant water status.

Dr. Campbell is one of the world’s foremost authorities on physical measurements in the soil-plant-atmosphere continuum. His book written with Dr. John Norman on Environmental Biophysics provides a critical foundation for anyone interested in understanding the physics of the natural world. Dr. Campbell has written three books, over 100 refereed journal articles and book chapters, and has several patents.

Learn more

Download the “Complete guide to irrigation management”—>

Soil moisture sensors aid forensic science in time-of-death estimates

Extending time of death estimates

Forensic scientists are looking at better, more accurate ways of determining the post-mortem interval, or time of death. When a human body decomposes, microbes and nematodes become abundant in the soil surrounding the body. The types and maturity of these organisms may be a means of determining the time of death, but thus far most studies have focused on short post-mortem time frames.

Image of a footprint in the dirt
Scientists look for ways to increase the accuracy of long-term post-mortem interval estimates

That’s why Stacy Taylor, her advisor, Dr. Jennifer DeBruyn, and their research team at the University of Tennessee are using cutting-edge molecular techniques and classical microscopic techniques to try and extend the time frames over which this approach could be used to determine how long it’s been since victims have died. 

Monitoring dramatic soil changes   

Taylor, a winner of the National Institute of Justice Graduate Research Fellowship in STEM, working in conjunction with the UT Anthropology Research Facility, is measuring biological and chemical changes in soil composition brought about by long-term human decomposition. She says, “We are looking at a combination of soil chemistry, microbial ecology, and some of the soil animals, particularly the nematodes, to get an entire food web approach in understanding all of the nutrient cycling that is occurring in these systems. We want to look at the soil chemistry patterns and microbial/nematode succession to see if these cross-inform each other.” 

Taylor explains some of the changes in soil composition that occur during both vertebrate and invertebrate decomposition, “Basically, any time you have a decomposition event that is not composed of plant litter, it creates what’s called a “hot spot” of nutrient enrichment. Unlike plant litter, which decomposes very slowly, with a vertebrate system you have a tremendous amount of protein and fat. You also have a lot of calcium, magnesium, sodium, and potassium. And when you put a large load of these things into the soil, you get a huge change in soil organic composition, nutrient availability, and soil moisture. So you’re essentially dealing with massive changes in a very localized soil environment.”

Decomposition also changes the soil water

Taylor and her adviser Dr. Debruyn had the fairly new idea to insert METER soil moisture, temperature and electrical conductivity sensors connected to data loggers into the soil in these hot spots, to see what kind of interesting data would turn up.

Updated version of the TEROS 12 sensor
The TEROS 12 is an updated version of the sensor Taylor used in her research

She says they’ve been surprised at how informative and eye-opening this has been. She explains, “These hot spots change the ionic strength of the soil water. And that is highly correlated to electrical conductivity, which is measured by the soil moisture sensors. A change in ionic strength potentially impacts the salinity of the soil. Some of those changes have been shown to persist for well over a year, which is what these soil sensors are showing. I take an hourly reading, and the sensors are producing the most amazing data.”  

Taylor says the sensors were inserted into the soil surface, so they could measure the impact the decomposition produced immediately on the upper layer of soil. They took soil cores at 16 centimeters to measure soil pH and EC, and they also used RT-1 air temperature sensors to track accumulated degree days which are based on ambient air temperature and correlate with maggot growth and development rates. 

Identifying time markers

Taylor says that soil changes (in particular EC and temperature) are not just general deviations but show clear stages as decomposition progresses through time, indicating they might be useful as time markers. She explains, “We are tracking a succession of events. These events happen at particular time points and are associated with certain decomposition stages (i.e, bloat, active decay, advanced decay, or skeletonized remains). For example, you might see traces of increased electrical conductivity followed by a drop. If that drop happens at the same stage of decomposition, over and over, then you know that you have a time marker. And when you gradually accumulate some of these time markers, that can potentially inform some of the existing estimates of how long something has been there.”

Crime scene tape in front of an accident
Taylor’s study is about bringing better justice and more peace to the families of crime victims.

What’s the future?

Taylor says the implications of this study will help nail down many of the intrinsic controls on the decomposition process. And once they understand that, they’ll have a better idea how to employ these estimates of post mortem interval, which will bring better justice and more peace to the families of crime victims. About the future of the research, she says, “This is the kind of study that you want to replicate at other human decomposition facilities that vary by altitudes, weather, soils, and more. You need to be able to look at a variety of environments just to see what happens.”

You can read more about Stacy’s project here.

To learn more about measuring soil moisture, download “The researcher’s complete guide to soil moisture“.

To understand how soil moisture and soil water potential work together, download “The researcher’s complete guide to water potential.”

Electrical Conductivity of Soil as a Predictor of Plant Response (Part 2)

Salt in soil comes from the fertilizer we apply but also from irrigation water and dissolving soil minerals.  If more salt is applied in the irrigation water than is leached or taken off in harvested plants, the soil becomes more saline and eventually ceases to support agricultural production (see part 1).  This week, learn an effective way to measure electrical conductivity (EC) in soil.

Irrigation lines in a field

Salt in irrigation water reduces its water potential, making it less available to the plant.

How to Measure Electrical Conductivity of the Soil Solution

As mentioned above, the earliest measurements of solution conductivity were made on soil samples, but it was found to be more reliable to extract the soil solution and make the measurements on it. When values for unsaturated soils are needed, those are calculated based on the saturation numbers and conjecture about how the soil dried to its present state. Obviously a direct measurement of the soil solution conductivity would be better if it could be made reliably.

Two approaches have been made to this measurement. The first uses platinum electrodes embedded in ceramic with a bubbling pressure of 15 bars. Over the plant growth range the ceramic remains saturated, even though the soil is not saturated, allowing a measurement of the solution in the ceramic. As long as there is adequate exchange between the ceramic and the soil solution, this measurement will be the EC of the soil solution, pore water EC.

Plants sprouting out of soil

Salt in soil comes from the fertilizer we apply, irrigation water and dissolving soil minerals.

The other method measures the conductivity of the bulk soil and then uses empirical or theoretical equations to determine the pore water EC. The TEROS 12 sensor uses the second method. It requires no exchange of salt between soil and sensor and is therefore more likely to indicate the actual solution electrical conductivity. The following analysis shows one of several methods for determining the electrical conductivity of the saturation extract from measurements of the bulk soil electrical conductivity.

Mualem and Friedman (1991) proposed a model based on soil hydraulic properties. It assumes two parallel conduction paths: one along the surface of soil particles and the other through the soil water. The model is

Soil hydraulic properties equation

Equation 1

Here σb is the bulk conductivity which is measured by the probe, σs is the bulk surface conductivity, σw is the conductivity of the pore water, θ is the volumetric water content, θs is the saturation water content of the soil and n is an empirical parameter with a suggested value around 0.5. If, for the moment, we ignore surface conductivity, and use eq. 1 to compute the electrical conductivity of a saturated paste (assuming n = 0.5 and θs = 0.5) we obtain σb = 0.35σw. Obviously, if no soil were there, the bulk reading would equal the electrical conductivity of the water. But when soil is there, the bulk conductivity is about a third of the solution conductivity. This happens because soil particles take up some of the space, decreasing the cross section for ion flow and increasing the distance ions must travel (around particles) to move from one electrode of the probe to the other. In unsaturated soil these same concepts apply, but here both soil particles and empty pores interfere with ion transport, so the bulk conductivity becomes an even smaller fraction of pore water conductivity.

Plowed dirt field with plow lines

When water evaporates at the soil surface, or from leaves, it is pure, containing no salt, so evapotranspiration concentrates the salts in the soil.

Our interest, of course, is in the pore water conductivity. Inverting eq. 1 we obtain

Water conductivity equation 1

Equation 2

In order to know pore water conductivity from measurements in the soil we must also know the soil water content, the saturation water content, and the surface conductivity. The TEROS 12 measures the water content. The saturation water content can be computed from the bulk density of the soil

Water conductivity equation 2

Equation 3

Where ρb is the soil bulk density and ρs is the density of the solid particles, which in mineral soils is taken to be around 2.65 Mg/m3 . The surface conductivity is assumed to be zero for coarse-textured soil. Therefore, using the TEROS 12 allows us to quantify pore water EC through the use of the above assumptions. This knowledge has the potential to be a very useful tool in fertilizer scheduling.

Electrical Conductivity is Temperature Dependent

Electrical conductivity of solutions or soils changes by about 2% per Celsius degree. Because of this, measurements must be corrected for temperature in order to be useful. Richards (1954) provides a table for correcting the readings taken at any temperature to readings at 25 °C. The following polynomial summarizes the table

Electrical conductivity equation

where t is the Celsius temperature. This equation is programmed into the 5TE, so temperature corrections are automatic.

Plant base with soil on the roots

Soil salinity has been measured using electrical conductivity for more than 100 years.

Units of Electrical Conductivity

The SI unit for electrical conductance is the Siemen, so electrical conductivity has units of S/m. Units used in older literature are mho/cm (mho is reciprocal ohm), which have the same value as S/cm. Soil electrical conductivities were typically reported in mmho/cm so 1 mmho/cm equals 1 mS/cm. Since SI discourages the use of submultiples in the denominator, this unit is changed to deciSiemen per meter (dS/m), which is numerically the same as mmho/cm or mS/cm. Occasionally, EC is reported as mS/m or µS/m. 1 dS/m is 100 mS/m or 105 µS/m.

Understand EC sensor readings

Understanding the difference between electrical conductivity readings in water and in soil can help you make better use of your EC readings. Watch the video to answer questions such as “Why does water that’s 1.9 dS/m not read 1.9 dS/m when it’s in the soil?

References

Richards, L. A. (Ed.) 1954. Diagnosis and Improvement of Saline and Alkali Soils. USDA Agriculture Handbook 60, Washington D. C.

Rhoades, J. D. and J. Loveday. 1990. Salinity in irrigated agriculture. In Irrigation of Agricultural Crops. Agronomy Monograph 30:1089-1142. Americal Society of Agronomy, Madison, WI.

Take our Soil Moisture Master Class

Six short videos teach you everything you need to know about soil water content and soil water potential—and why you should measure them together.  Plus, master the basics of soil hydraulic conductivity.

Watch it now—>

Learn more

Watch the webinar: “Using electrical conductivity measurements to optimize irrigation”—>

Download the “Researcher’s complete guide to water potential”—>

Download the “Researcher’s complete guide to soil moisture”—>

Electrical Conductivity of Soil as a Predictor of Plant Response

Plants require nutrients to grow, and if we fail to supply the proper nutrients in the proper concentrations, plant function is affected. Fertilizer in too high concentration can also affect plant function, and sometimes is fatal.

Grass with dew droplets covering them

Plant function is affected by nutrient concentration.

Most of us have had the experience of fertilizing some part of a lawn too heavily, perhaps by accident, and killing grass in that part of the lawn. Generally, it isn’t the nutrients themselves that cause the damage, it is their effect on the water. Salt in the water reduces its water potential making it less available to the plant. The salt therefore causes water stress in the plant.

Salt in soil comes from the fertilizer we apply, but also from irrigation water and dissolving soil minerals. Relatively small amounts are removed with the plants that are harvested, but most leaches with the water out of the bottom of the soil profile. When water evaporates at the soil surface, or from leaves, it is pure, containing no salt, so evapotranspiration concentrates the salts in the soil. If more salt is applied in the irrigation water than is leached or taken off in harvested plants, the soil becomes more saline and eventually will cease to support agricultural production. Thousands of acres have been lost from production in this way, and production has been drastically reduced on tens of thousands of additional acres.

Super green bamboo stalks

Thousands of acres have been lost from over-fertilization.

Soil Salinity and Electrical Conductivity

Soil salinity has been measured using electrical conductivity for more than 100 years. It is common knowledge that salty water conducts electricity. Whitney and Means (1897) made use of that fact to measure the concentration of salt in soil. Early methods made measurements directly on a soil paste, but the influence of the soil in the paste on the measurement was not fully understood until recently, leading to uncertainty in the measurements. By about 1940 the accepted method for determining soil salinity was to make a saturated paste by a specified procedure, extract solution from the paste, and measure the electrical conductivity of the solution (Richards, 1954). The measurement is referred to as the electrical conductivity of the saturation extract. These values were then correlated with crop response.

Richards (1954) defined 4 soil salinity classes, as shown in Table 1. Crops suitable for these classes are also listed by Richards, but a much more extensive list is given by Rhoades and Lovejoy (1990). For example, bean is listed as a sensitive crop. It can only be grown without yield damage in soils with EC below 2 dS/m. Barley is a tolerant crop. It can be grown without much yield reduction in any soil up to EC of 16 dS/m.

Salinity classes for soils chart

Table 1: Salinity classes for soils

Two other columns are shown in the table. The “salt in soil” column shows how much salt is required to salinize a soil. In terms of the total soil mass, only a small percentage change is needed to make a big difference in salinity, but this would still represent a large addition of fertilizer. A 200 kg/ha addition of fertilizer would represent a fairly high rate. If this were incorporated into the top 15 cm of soil, it would represent

The salt in soil equation

This wouldn’t cause much change in soil salt percentage.

The other column shows osmotic potential of the saturation extract. To give some reference for this number, remember that the nominal permanent wilt water potential of soil is -1500 kPa. Osmotic potentials of plant leaves vary widely depending on species, but -1500 kPa is a kind of median value. The values in the table may seem small compared to the permanent wilt (PW) value, but remember that these are values at saturation. When a soil is saturated, water quickly drains to a “drained upper limit” (UL) water content which is around half the saturation value. The useful water storage of the soil is between the UL and the PW or lower limit water content, which, again, is about half the UL. The concentration of salts at the UL is about the same as at saturation because the water drained away, but the water loss between the UL and PW is typically by evapotranspiration, so little or no salts are lost. The concentration at the lower limit is therefore twice that shown in Table 1, which is significant compared to the permanent wilt water potential. Likewise the osmotic potential of the soil solution after fertilizing with 200 kg/ka and mixing wouldn’t change much, but the same amount of fertilizer concentrated in a band near seed would have a much larger effect.

Understand EC sensor readings

Understanding the difference between electrical conductivity readings in water and in soil can help you make better use of your EC readings. Watch the video to answer questions such as “Why does water that’s 1.9 dS/m not read 1.9 dS/m when it’s in the soil?

Learn more

Watch the webinar: “Using electrical conductivity measurements to optimize irrigation”—>

Download the “Researcher’s complete guide to water potential”—>

Download the “Researcher’s complete guide to soil moisture”—>

Next Week: Read part 2 of Electrical Conductivity as a Predictor of Soil Response.

Take our Soil Moisture Master Class

Six short videos teach you everything you need to know about soil water content and soil water potential—and why you should measure them together.  Plus, master the basics of soil hydraulic conductivity.

Watch it now—>