Skip to content

Posts from the ‘Soil moisture sensors’ Category

Stem Water Content Changes Our Understanding of Tree Water Use

In an update to our previous blog, “Soil Moisture Sensors in a Tree?”, we highlight two current research projects using soil moisture sensors to measure volumetric water content (VWC) in tree stems and share why this previously difficult-to-obtain measurement will change how we look at tree water usage.

Image of green leafs with sunlight streaming through them

Researchers explore the feasibility of inserting capacitance soil sensors in tree stems as a real-time measurement.

Soil Moisture Sensors in Tree Stems?

In a recent research project, Ph.D. candidate Ashley Matheny of the University of Michigan used soil sensors to measure volumetric water content in the stems of two species of hardwood trees in a northern Michigan forest: mature red oak and red maple.  Though both tree types are classified as deciduous, they have different strategies for how they use water. Oak is anisohydric, meaning the species doesn’t control their stomata to reduce transpiration, even in drought conditions.  Isohydric maples are more conservative. If the soil starts to dry out, maple trees will maintain their leaf water potential by closing their stomata to conserve water.  Ashley and her research team wanted to understand the different ways these two types of trees use stem water in various soil moisture scenarios.

Historically, tree water storage has been measured using dendrometers and sap flow data, but Ashley’s team wanted to explore the feasibility of inserting a capacitance-type soil sensor in the tree stems as a real-time measurement.  They hoped for a practical way to make this measurement to provide more accurate estimations of transpiration for use in global models.  

Image of a Hardwood tree in northern Michigan in Autumn

Scientists measured volumetric water content in the stems of two species of hardwood trees in a northern Michigan forest: mature red oak and red maple.

Measurements used

Ashley and her team used meteorological, sap flux, and stem water content measurements to test the effectiveness of capacitance sensors for measuring tree water storage and water use dynamics in one red maple and one red oak tree of similar size, height, canopy position and proximity to one another (Matheny et al. 2015). They installed both long and short soil moisture probes in the top and the bottom of the maple and oak tree stems, taking continuous measurements for two months. They calibrated the sensors to the density of the maple and oak woods and then inserted the sensors into drilled pilot holes.  They also measured soil moisture and temperature for reference, eventually converting soil moisture measurements to water potential values.

Results Varied According to Species

The research team found that the VWC measurements in the stems described tree storage dynamics which correlated well with average sap flux dynamics.  They observed exactly what they assumed would be the anisohydric and isohydric characteristics in both trees.  When soil water decreased, they saw that red oak used up everything that was stored in the stem, even though there wasn’t much available soil moisture.  Whereas in maple, the water in the stem was more closely tied to the amount of soil water. After precipitation, maple trees used the water stored in their stem and replaced it with more soil water.  But, when soil moisture declined, they held onto that water and used it at a slower rate.

Red, yellow, green leafs in Autumn

Researchers want to figure out the appropriate level of detail for tree water-use strategy in a global model.

Trees use different strategies at the species level

The ability to make a stem water content measurement was important to these researchers because much of their work deals with global models representing forests in the broadest sense possible.  They want to figure out the appropriate level of detail for tree water-use strategy in a global model. Both oak and the maple are classified as broadleaf deciduous, and in a global model, they’re lumped into the same category. But this study illustrates that if you’re interested in hydrodynamics (the way that trees use water), deciduous trees use different strategies at the species level.  Thus, there is a need to treat them differently to produce accurate models.

Read the full study in Ecosphere.

Reference: Matheny, A. M., G. Bohrer, S. R. Garrity, T. H. Morin, C. J. Howard, and C. S. Vogel. 2015. Observations of stem water storage in trees of opposing hydraulic strategies. Ecosphere 6(9):165. http://dx.doi.org/10.1890/ES15-00170.1

Next week: Part 2 of this article showcases more research being done using soil moisture sensors to measure volumetric water content in tree stems.

Get more information on applied environmental research in our

Download the “Researcher’s complete guide to soil moisture”—>

Electrical Conductivity of Soil as a Predictor of Plant Response (Part 2)

Salt in soil comes from the fertilizer we apply but also from irrigation water and dissolving soil minerals.  If more salt is applied in the irrigation water than is leached or taken off in harvested plants, the soil becomes more saline and eventually ceases to support agricultural production (see part 1).  This week, learn an effective way to measure electrical conductivity (EC) in soil.

Irrigation lines in a field

Salt in irrigation water reduces its water potential, making it less available to the plant.

How to Measure Electrical Conductivity of the Soil Solution

As mentioned above, the earliest measurements of solution conductivity were made on soil samples, but it was found to be more reliable to extract the soil solution and make the measurements on it. When values for unsaturated soils are needed, those are calculated based on the saturation numbers and conjecture about how the soil dried to its present state. Obviously a direct measurement of the soil solution conductivity would be better if it could be made reliably.

Two approaches have been made to this measurement. The first uses platinum electrodes embedded in ceramic with a bubbling pressure of 15 bars. Over the plant growth range the ceramic remains saturated, even though the soil is not saturated, allowing a measurement of the solution in the ceramic. As long as there is adequate exchange between the ceramic and the soil solution, this measurement will be the EC of the soil solution, pore water EC.

Plants sprouting out of soil

Salt in soil comes from the fertilizer we apply, irrigation water and dissolving soil minerals.

The other method measures the conductivity of the bulk soil and then uses empirical or theoretical equations to determine the pore water EC. The TEROS 12 sensor uses the second method. It requires no exchange of salt between soil and sensor and is therefore more likely to indicate the actual solution electrical conductivity. The following analysis shows one of several methods for determining the electrical conductivity of the saturation extract from measurements of the bulk soil electrical conductivity.

Mualem and Friedman (1991) proposed a model based on soil hydraulic properties. It assumes two parallel conduction paths: one along the surface of soil particles and the other through the soil water. The model is

Soil hydraulic properties equation

Equation 1

Here σb is the bulk conductivity which is measured by the probe, σs is the bulk surface conductivity, σw is the conductivity of the pore water, θ is the volumetric water content, θs is the saturation water content of the soil and n is an empirical parameter with a suggested value around 0.5. If, for the moment, we ignore surface conductivity, and use eq. 1 to compute the electrical conductivity of a saturated paste (assuming n = 0.5 and θs = 0.5) we obtain σb = 0.35σw. Obviously, if no soil were there, the bulk reading would equal the electrical conductivity of the water. But when soil is there, the bulk conductivity is about a third of the solution conductivity. This happens because soil particles take up some of the space, decreasing the cross section for ion flow and increasing the distance ions must travel (around particles) to move from one electrode of the probe to the other. In unsaturated soil these same concepts apply, but here both soil particles and empty pores interfere with ion transport, so the bulk conductivity becomes an even smaller fraction of pore water conductivity.

Plowed dirt field with plow lines

When water evaporates at the soil surface, or from leaves, it is pure, containing no salt, so evapotranspiration concentrates the salts in the soil.

Our interest, of course, is in the pore water conductivity. Inverting eq. 1 we obtain

Water conductivity equation 1

Equation 2

In order to know pore water conductivity from measurements in the soil we must also know the soil water content, the saturation water content, and the surface conductivity. The TEROS 12 measures the water content. The saturation water content can be computed from the bulk density of the soil

Water conductivity equation 2

Equation 3

Where ρb is the soil bulk density and ρs is the density of the solid particles, which in mineral soils is taken to be around 2.65 Mg/m3 . The surface conductivity is assumed to be zero for coarse-textured soil. Therefore, using the TEROS 12 allows us to quantify pore water EC through the use of the above assumptions. This knowledge has the potential to be a very useful tool in fertilizer scheduling.

Electrical Conductivity is Temperature Dependent

Electrical conductivity of solutions or soils changes by about 2% per Celsius degree. Because of this, measurements must be corrected for temperature in order to be useful. Richards (1954) provides a table for correcting the readings taken at any temperature to readings at 25 °C. The following polynomial summarizes the table

Electrical conductivity equation

where t is the Celsius temperature. This equation is programmed into the 5TE, so temperature corrections are automatic.

Plant base with soil on the roots

Soil salinity has been measured using electrical conductivity for more than 100 years.

Units of Electrical Conductivity

The SI unit for electrical conductance is the Siemen, so electrical conductivity has units of S/m. Units used in older literature are mho/cm (mho is reciprocal ohm), which have the same value as S/cm. Soil electrical conductivities were typically reported in mmho/cm so 1 mmho/cm equals 1 mS/cm. Since SI discourages the use of submultiples in the denominator, this unit is changed to deciSiemen per meter (dS/m), which is numerically the same as mmho/cm or mS/cm. Occasionally, EC is reported as mS/m or µS/m. 1 dS/m is 100 mS/m or 105 µS/m.

Understand EC sensor readings

Understanding the difference between electrical conductivity readings in water and in soil can help you make better use of your EC readings. Watch the video to answer questions such as “Why does water that’s 1.9 dS/m not read 1.9 dS/m when it’s in the soil?

 

References

Richards, L. A. (Ed.) 1954. Diagnosis and Improvement of Saline and Alkali Soils. USDA Agriculture Handbook 60, Washington D. C.

Rhoades, J. D. and J. Loveday. 1990. Salinity in irrigated agriculture. In Irrigation of Agricultural Crops. Agronomy Monograph 30:1089-1142. Americal Society of Agronomy, Madison, WI.

Take our Soil Moisture Master Class

Six short videos teach you everything you need to know about soil water content and soil water potential—and why you should measure them together.  Plus, master the basics of soil hydraulic conductivity.

Watch it now—>

Learn more

Watch the webinar: “Using electrical conductivity measurements to optimize irrigation”—>

Download the “Researcher’s complete guide to water potential”—>

Download the “Researcher’s complete guide to soil moisture”—>

Avocado Growers in Kenya Fight Drought with Recycled Water Bottle Irrigation (Part 2)

Dr. Brent Clothier, Dr. Steve Green, Roberta Gentile and their research team from Plant and Food Research in New Zealand are working in Kenya to alleviate the poverty of the many small-holder farmers who grow avocados in the Central Highlands of Kenya (see part 1). This week, read about an inexpensive irrigation solution for these farmers and how the researchers are developing a plan to manage nutrients.

Flowering avocado plant

The period of water stress in October is at the time of main flowering.

Recycled Water Bottles Provide a Solution

When the team was visited Kenya in early March, the Long Rains had not arrived, and the trees were under water stress. The researchers sought to reduce the impact of drought by using a prototype of a portable drip-irrigation system they developed. They used ‘old’ 20-liter drinking water bottles to deliver water to the trees at 4 L/hr.

Researcher standing with 20 L water bottles used for tree irrigation

20 L water bottles used for tree irrigation.

The bottles can be refilled and moved from tree to tree. By measuring water content in the soil, the team found that the 20 L of drip irrigated water lasted in the soil about 2 days. When the period was increased to 4 days, the root water uptake was reduced over days 3 and 4 after wetting. Thus they recommended the bottle be recharged and reapplied every two days. This enables the bottle to be used on another tree on the intervening day and should help the farmers to reduce the worst impacts of the drought while waiting for the Long Rains to arrive.

People refilling the water bottles in town

Refilling the water bottles.

Replacing Low Soil Nutrients

In another phase of the experiment, Dr. Clothier’s team surveyed soil and plant nutrient contents in the main avocado production regions to assess the current fertility status of the farms. Soils in this region are classified as Nitisols, deep red soils with a nut-shaped structure and high iron content (Jones et al. 2013). These soils have low levels of organic matter and low pH. Soil sampling revealed a decrease in pH and increase in organic matter with altitude in the Kandara valley. This observed gradient is likely attributable to the higher amounts rainfall received in the higher altitudes of the valley, which can increase organic matter production and leach base cations from the soil. Soil and leaf nutrient analyses of the monitoring farms showed similar trends in nutrient availability. There are also low levels of the macronutrients nitrogen and phosphorus and the micronutrient boron in these soils. These nutrients are essential for avocado growth and production. One challenge to improve avocado productivity is finding ways to improve soil nutrient availability and tree nutrition.

Cow resting underneath the shade of a tree

An example of the benefits of a secure revenue-stream: One farmer purchased a new cow, which enables him to meet the nutrient requirements of more avocado trees.

A Plan for Managing Nutrients

The majority of the small-holder farms supplying avocados to Olivado use organic production methods. This means organic amendments such as plant residues, composts and animal manures are required to replenish the nutrients that are exported from the farms and improve soil fertility. Livestock have the potential to provide nutrient amendments for a considerable number of avocado trees. Even better, the input of organic materials will build-up soil organic matter levels, which benefit soil conservation, water holding capacity, pH buffering, and soil biological activity.

The researchers are developing simple nutrient budgets for these avocado trees using yield and fruit nutrient concentration data to assess the quantity of nutrients being exported off-farm in the harvested crop. Using the nutrient concentrations of locally available organic amendments, they will provide recommendations on the amount of organic material needed to sustain soil fertility.

Nutrient balances will be incorporated into a decision support tool to assist small-holder farmers in enhancing their soil and plant nutrition. These budgets will be enhanced by further characterizing the nutrient composition and quantities of available organic matter amendments in the region. The researchers are working to improve these nutrient budget estimates with data specific to the avocado farms in the region. They will also set up demonstration farms to evaluate the production responses to recommended nutrient management practices.

To find out more about Kenyan avocado research contact Brent Clothier: [email protected] .

(This article is a summary/compilation of several articles first printed in WISPAS newsletter)

References:

Jones, A., Breuning-Madsen, H., Brossard, M., Dampha, A., Deckers, J., Dewitte, O., Gallali, T., Hallett, S., Jones, R., Kilasara, M., Le Roux, P., Micheli, E., Montanarella, L., Spaargaren, O., Thiombiano, L., Van Ranst, E., Yemefack, M., Zougmore, R., (eds.) 2013. Soil Atlas of Africa. European Commission, Publications Office of the European Union, Luxembourg. 176 pp.

Download the “Researcher’s complete guide to soil moisture”—>

Download the “Researcher’s complete guide to water potential”—>

Get more information on applied environmental research in our

Avocado Growers in Kenya Fight Drought with Recycled Water Bottle Irrigation

Dr. Brent Clothier, Dr. Steve Green, Roberta Gentile and their research team from Plant and Food Research in New Zealand are working in Kenya to alleviate the poverty of the many small-holder farmers who grow avocados in the Central Highlands of Kenya. These farmers have old and very large avocado trees. The fruit from these trees are purchased by the company Olivado EPZ who presses over 1300 small-holders’ avocados for oil. Dr. Clothier and his team are investigating how to increase the productivity of the farmers’ avocado trees and increase the quality of the fruit so they yield more oil.

Avocados on an avocado tree

Small-holder farmers grow avocados in the Central Highlands of Kenya.

Reducing Leaf Area to Avoid Water Stress

Because of the age and size of these trees, harvesting of the avocados is difficult and time consuming, and through dropped fruit, the quality of the avocados can be comprised. In addition, any dry season water-stress negatively impacts fruit filling. The research team performed some initial remedial pruning of these trees to develop a more manageable and productive tree form. They sought to assess whether the reduced leaf area would enable the trees to avoid water stress during the dry season of January through March between the short and long rainy seasons. They removed 30-40% of the central limbs of the avocado tree to create a more open canopy form.

The team instrumented two trees with heat-pulse sap-flow probes. One tree was left unpruned and the tree in the photo above was pruned. The tree that was pruned was using between 300-400 liters per day, as expected for a tree of that large size. The unpruned tree was smaller in size, and it was using between 150-250 liters per day during May and June. The selective limb pruning resulted in the rate of water-use dropping to 200-300 liters per day, a drop of 100 liters per day.

Pruned avocado tree

The more open canopy form of the pruned avocado tree.

Determining Tree Water Use During Rainy and Dry Seasons

The team also measured the water-use of four trees of different sizes during the entire season using the compensation heat-pulse method and soil water content. They found the trees’ water-use doubled with the arrival of the Short Rains and then began to decline in early January after the rains ended. The trees were under a degree of water stress prior to the arrival of the (short) Short Rains, and as the weak Short Rains ended early, the trees again went into water stress with only occasional respite due to isolated rainstorms in January and February.

This pattern of water stress presents a challenge for sustaining high levels of avocado production. The period of water stress in October is at the time of main flowering, and researchers who were there noted a carpet of aborted flowers on the orchard floor. They also noticed that the fruit were smaller at one farm than those higher up in the Central Highlands where rainfall is higher and more frequent. Thus, to improve production it is imperative to mitigate the impacts of drought, and this needs to be done without reference to any infrastructure for irrigation.

Next week: Read about an inexpensive irrigation solution for these farmers and how the researchers are developing a plan to manage nutrients.

(This article is a summary/compilation of several articles first printed in WISPAS newsletter)

Download the “Researcher’s complete guide to soil moisture”—>

Get more information on applied environmental research in our

Soil Moisture Sensors: Why TDR VS. Capacitance May Be Missing the Point (Part 2)

Dr. Colin S. Campbell discusses whether TDR vs. capacitance (see part 1) is the right question, the challenges facing soil moisture sensor technology, and the correct questions to ask before investing in a sensor system.

Image of plants Growing in a Field

It’s easy to overlook the obvious question: what is being measured?

What are You Trying to Measure?

When considering which soil water content sensor will work best for any application, it’s easy to overlook the obvious question: what is being measured?  Time Domain Reflectometry (TDR) vs. capacitance is the right question for a researcher who is looking at the dielectric permittivity across a wide measurement frequency spectrum (called dielectric spectroscopy). There is important information in these data, like the ability to measure bulk density along with water content and electrical conductivity. If this is the desired measurement, currently only one technology will do: TDR. The reflectance of the electrical pulse that moves down the conducting rods contains a wide range of frequencies.  When digitized, these frequencies can be separated by fast fourier transform and analyzed for additional information.

The objective for the majority of scientists, however, is to simply monitor soil water content instantaneously or over time, with good accuracy. There are more options if this is the goal, yet there are still pitfalls to consider.

Soil moisture sensor close-up

Considerable research has been devoted to determining which soil moisture sensors meet expectation.

Each Technology Has Challenges

Why would a scientist pay $100+ for a soil volumetric water content (VWC) sensor, when there are hundreds of soil moisture sensors online costing between $5 and $15? This is where knowing HOW water content is measured by a sensor is critical.

Most sensors on home and garden websites work based on electrical resistivity or conductivity. The principle is simple: more water will allow more electrons to flow. So conductivity will change with soil water content. But, while it’s possible to determine whether water content has changed with this method, absolute calibration is impossible to achieve as salts in the soil water will change as the water content changes. A careful reading of sensor specs will sometimes uncover the measurement method, but sometimes, price is the only indication.

Somewhere between dielectric spectroscopy and electrical resistance are the sensors that provide simple, accurate water content measurement. Considerable research has been devoted to determining which of these meet expectation, and the results suggest that Campbell Scientific, Delta-T, Stevens, Acclima, Sentek, and METER (formerly Decagon Devices), provide accurate sensors vetted by soil scientists. The real challenge is installing the sensors correctly and connecting them to a system that meets data-collection and analysis needs.

Installation Techniques Affect Accuracy

Studies show there is a difference between mid-priced sensor accuracy when tested in laboratory conditions. But, in the field, sensor accuracy is shown to be similar for all good quality probes, and all sensors benefit from site-specific soil calibration. Why? The reason is associated with the principle upon which they function. The electromagnetic field these sensors produce falls off exponentially with distance from the sensor surface because the majority of the field is near the electrodes. So, in the lab, where test solutions form easily around sensor rods, there are differences in probe performance.  In a natural medium like soil, air gaps, rocks, and other detritus reduce the electrode-to-soil contact and tend to reduce sensor to sensor differences. Thus, picking an accurate sensor is important, but a high-quality installation is even more critical.

Crops with a blue sky background

Improper installation is the largest barrier to accuracy.

Which Capacitance Sensor Works Best?

Sensor choice should be based on how sensors will be installed, the nature of the research site, and the intended collection method. Some researchers prefer a profile sensor, which allows instruments to be placed at multiple depths in a single hole. This may facilitate fast installation, but air gaps in the auger pilot hole can occur, especially in rocky soils. Fixing this problem requires filling the hole with a slurry, resulting in disturbed soil measurements. Still, profile sensor installation must be evaluated against the typical method of digging a pit and installing sensors into a sidewall. This method is time consuming and makes it more difficult to retrieve sensors.

New technology that allows sensor installation in the side of a 10 cm borehole may give the best of both worlds, but still requires backfill and has the challenge of probe removal at the end of the experiment.

The research site must also be a consideration. If the installation is close to main power or easily reached with batteries and solar panels, your options are open: all sensors will work. But, if the site is remote, picking a sensor and logging system with low power requirements will save time hauling in solar panels or the frustration of data loggers running out of batteries.

ZL6 Data Logger

Often times it comes down to convenience.

Data Loggers Can Be a Limitation

Many manufacturers design data loggers that only connect to the sensors they make. This can cause problems if the logging system doesn’t meet site needs. All manufacturers mentioned above have sensors that will connect to general data loggers such as Campbell Scientific’s CR series. It often comes down to convenience: the types of sensor needed to monitor a site, the resources needed to collect and analyze the data, and site maintenance. Cost is an issue too, as sensors range from $100 to more than $3000.

Successfully Measure Water Content

The challenge of setting up and monitoring soil water content is not trivial, with many choices and little explanation of how each type of sensor will affect the final results. There are a wealth of papers that review the critical performance aspects of all the sensors discussed, and we encourage you to read them. But, if soil water content is the goal, using one of the sensors from the manufacturers named above, a careful installation, and a soil-specific calibration, will ensure a successful, accurate water content measurement.

For an in-depth comparison of TDR versus capacitance technology, read: Dielectric Probes Vs. Time Domain Reflectometers

Watch the webinar

In this webinar, Dr. Colin Campbell discusses the details regarding different ways to measure soil moisture and the theory behind the measurements.  In addition, he provides examples of field research and what technology might apply in each situation. The measurement methods covered are gravimetric sampling, dielectric methods including TDR and FDR/capacitance, neutron probe, and dual needle heat pulse.

 

Take our Soil Moisture Master Class

Six short videos teach you everything you need to know about soil water content and soil water potential—and why you should measure them together.  Plus, master the basics of soil hydraulic conductivity.

Watch it now—>

Download the “Researcher’s complete guide to soil moisture”—>

Improved Methods Save Money in Future Borehole Thermal Energy Storage Design

Globally, the gap between the energy production and consumption is growing wider. To promote sustainability, University of California San Diego PhD candidate and ASCE GI Sustainability in Geotechnical Engineering committee member, Tugce Baser, Dr. John McCartney, Associate Professor, and their research team, Dr. Ning Lu, Professor at Colorado School of Mines and Dr. Yi Dong, Postdoctoral Researcher at Colorado School of Mines, are working on improving methods for borehole thermal energy storage (BTES), a system which stores solar heat in the soil during the summer months for reuse in homes during the winter. Baser says, “We are running out of finite energy resources. We need to come up with new strategies to use free and renewable energy resources such as solar energy for a sustainable future.”

Borehole thermal energy storage

Baser’s BTES design.

How it works

BTES systems are an approach to provide efficient renewable resource-based thermal energy to heat buildings. They are configured to store thermal energy collected from solar thermal panels during the summer and discharge the heat to buildings during the winter. They function by circulating a fluid within a closed-loop pipe network installed in vertical boreholes to inject heat collected from solar thermal panels. During winter, cold fluid is circulated through the heat exchangers to recover the heat from the subsurface and distribute it to the buildings. Baser explains, “The subsurface provides an excellent medium to store this heat due to the relatively lower thermal conductivity and lower specific heat capacity especially when the soil layer is in the vadose zone. Lower thermal properties allow us to concentrate the heat in a specific array and the heat losses to the environment are potentially low. These systems typically include an insulation layer and a hydraulic barrier near the ground surface to reduce heat and vapor losses to the atmosphere.”

Image depicts BTES construction

BTES construction.

Why do we need improved methods?

Baser and her team are trying to improve the understanding of heat storage mechanisms and evaluate changes in the rate of heat transfer and heat storage in the vadose zone where the soil is unsaturated. The goal of the project is improve conventional methods by generating models to fit different soil types and situations.  She says, “The European community introduced us to the borehole thermal energy storage systems to provide heat specifically for domestic use, but there is still a chance for us to design them more efficiently by having a full understanding of the thermal response of these systems that is specific to the ground material and subsurface conditions. The primary objective of this research is to understand the mechanisms of coupled heat transfer and water flow in unsaturated soil profiles during the heat injection and subsequent heat extraction into these different arrays and different dimensions of borehole heat exchangers.”

Solar panels propped up outside of a ware house

Solar panels.

Baser and her team working on designing numerical models based on finite element method which improve some of the numerical models in the literature used to characterize the thermal response of the systems. The new models add new considerations, such as the heat pipe effect in different soil types. Baser explains, “Because thermal and hydraulic properties of soils are highly coupled and are specific to soils, the thermal response of a BTES system will be different when it is installed in different types of soils. For example, you see the heat pipe effect where there is evaporation and subsequent condensation in fine grained soils rather than coarse soils because in coarse grain soils the pore characteristics are different. The duration of the heat pipe effect (or convective cycle) is longer in fine grain soils. We conclude that considering coupled heat transfer and water flow in the thermal response of Borehole Thermal Energy Storage system is important.”

Image of a hole which is being used for an in-group heat exchanger

In-ground heat exchanger

Experiments in the field and in the lab help verify the new models

To fully understand heat transfer mechanisms and water flow in unsaturated soils, the research team installed two different SBTS systems at different scales, one in Golden, Colorado School of Mines campus, and the other at the UC San Diego research campus.  Baser says, “The subsurface characteristics of both sites are different, and this gives us the opportunity to investigate the impact of the different soil layers on the thermal response experimentally in a full scale. In addition, the scales of each Borehole Thermal Energy Storage system are different, and we also apply different heat injection rates. We have used these data to further validate our coupled heat transfer and water flow model so that we can use it for design purposes.”

Diagram of soil moisture sensor locations

Soil moisture sensor locations.

Baser started with laboratory heating experiments, in which soil in a large tank is heated by heat exchangers. She installed soil moisture sensors to measure volumetric water content and the temperature and then used the KD2 pro thermal property analyzer (recently updated to TEMPOS) to monitor thermal properties during heating experiments to characterize the coupled thermo-hydraulic relationships. For the field experiments the team uses soil moisture sensors equipped with temperature sensors and the KD2 pro to monitor subsurface temperature fluctuation because during the summertime the air temperature is higher, thus ambient air temperature fluctuation and penetration may become significant.

Baser also uses thermistor strings that include six thermistors at different depths and thermistor pipe plugs, voltage input modules, and flow meters.  She says, “Thermistor pipe plugs and flow meters are used in the manifold to monitor the inlet and outlet fluid temperatures and flow rates in each loop to calculate heat transfer rate into the ground. Flow meters were installed to control flow in each loop because you don’t want to over or underload the borehole loops. The amount of energy that you collect from the solar loop and the amount of energy that you inject into the ground can be used to define the efficiency of the system.” Baser says thermistor strings help monitor the ground temperature during the summer heat loading at different depths. They’re also used to monitor borehole wall temperature over time. The team installed one thermistor string 9 meters away from the heat storage array to see if far field is affected by the heat transfer within the array.

Image of a borehole with insulation to prevent heat loss to the environment

Insulation prevents heat loss to the environment.

The new models will save money in future Borehole Thermal Energy Storage design

Baser says building numerical models and solving them was very complicated and time consuming, but they’ve had good results. She explains, “We’ve recently proved, both experimentally and numerically, that considering coupled thermal and hydraulic relationships are very important for thermal response analysis. Thus, our recommendation is that it’s fine to use the analytical models and user-friendly numerical models that consider constant thermal properties in the design analyses for saturated soils. However, in unsaturated soils, there is a very high possibility that the contribution of heat transfer evaporation and condensation would be missing and the Borehole Thermal Energy Storage system would be oversized, costing a significant amount of money. When dealing with soils in the vadose zone, coupled thermo-hydraulic constitutive relationships in the modeling efforts need to be considered.”

You can learn more about Tugce Baser’s research here.

Download the “Researcher’s complete guide to soil moisture”—>

Get more information on applied environmental research in our

Soil Moisture Sensors: Why TDR vs. Capacitance May Be Missing the Point

Time Domain Reflectometry (TDR) vs. capacitance is a common question for scientists who want to measure volumetric water content (VWC) of soil, but is it the right question?  Dr. Colin S. Campbell, soil scientist, explains some of the history and technology behind TDR vs. capacitance and the most important questions scientists need to ask before investing in a sensor system.

Image of a telephone poll standing in front of the ocean

TDR began as a technology the power industry used to determine the distance to a break in broken power lines.

Clarke Topp

In the late 1970s, Clarke Topp and two colleagues began working with a technology the power industry used to determine the distance to a break in broken power lines.  Time Domain Reflectometers (TDR) generated a voltage pulse which traveled down a cable, reflected from the end, and returned to the transmitter. The time required for the pulse to travel to the end of the cable directed repair crews to the correct trouble spot. The travel time depended on the distance to the break where the voltage was reflected, but also on the dielectric constant of the cable environment.  Topp realized that water has a high dielectric constant (80) compared to soil minerals (4) and air (1).  If bare conductors were buried in soil and the travel time measured with the TDR, he could determine the dielectric constant of the soil, and from that, its water content.  He was thus able to correlate the time it took for an electromagnetic pulse to travel the length of steel sensor rods inserted into the soil to volumetric water content. Despite his colleagues’ skepticism, he proved that the measurement was consistent for several soil types.

Close up of solar panels

TDR sensors consume a lot of power. They may require solar panels and larger batteries for permanent installations.

TDR Technology is Accurate, but Costly

In the years since Topp et al.’s (1980) seminal paper, TDR probes have proven to be accurate for measuring water content in many soils. So why doesn’t everyone use them? The main reason is that these systems are expensive, limiting the number of measurements that can be made across a field. In addition, TDR systems can be complex, and setting them up and maintaining them can be difficult.  Finally, TDR sensors consume a lot of power.  They may require solar panels and larger batteries for permanent installations. Still, TDR has great qualities that make these types of sensors a good choice.  For one thing, the reading is almost independent of electrical conductivity (EC) until the soil becomes salty enough to absorb the reflection.  For another, the probes themselves contain no electronics and are therefore good for long-term monitoring installations since the electronics are not buried and can be accessed for servicing, as needed.  Probes can be multiplexed, so several relatively inexpensive probes can be read by one set of expensive electronics, reducing cost for installations requiring multiple probes.

Close up of cracked soil

Many modern capacitance sensors use high frequencies to minimize effects of soil salinity on readings.

Advances in Electronics Enable Capacitance Technology

Dielectric constant of soil can also be measured by making the soil the dielectric in a capacitor.  One could use parallel plates, as in a conventional capacitor, but the measurement can also be made in the fringe field around steel sensor rods, similar to those used for TDR.  The fact that capacitance of soil varies with water content was known well before Topp and colleagues did their experiments with TDR.  So, why did the first attempt at capacitance technology fail, while TDR technology succeeded? It all comes down to the frequency at which the measurements are made.  The voltage pulse used for TDR has a very fast rise time.  It contains a range of frequencies, but the main ones are around 500 MHz to 1 GHz.  At this high frequency, the salinity of the soil does not affect the measurement in soils capable of growing most plants.  

Like TDR, capacitance sensors use a voltage source to produce an electromagnetic field between metal electrodes (usually stainless steel), but instead of a pulse traveling down the rods, positive and negative charges are briefly applied to them. The charge stored is measured and related to volumetric water content. Scientists soon realized that how quickly the electromagnetic field was charged and discharged was critical to success.  Low frequencies led to large soil salinity effects on the readings.  This new understanding, combined with advances in the speed of electronics, meant the original capacitance approach could be resurrected. Many modern capacitance sensors use high frequencies to minimize effects of soil salinity on readings.  

Image of Mars on a close up

NASA used capacitance technology to measure water content on Mars.

Capacitance Today is Highly Accurate

With this frequency increase, most capacitance sensors available on the market show good accuracy. In addition, the circuitry in them can be designed to resolve extremely small changes in volumetric water content, so much so, that NASA used capacitance technology to measure water content on Mars. Capacitance sensors are lower cost because they don’t require a lot of circuitry, allowing more measurements per dollar. Like TDR, capacitance sensors are reasonably easy to install. The measurement prongs tend to be shorter than TDR probes so they can be less difficult to insert into a hole. Capacitance sensors also tend to have lower energy requirements and may last for years in the field powered by a small battery pack in a data logger.   

In two weeks: Learn about challenges facing both types of technology and why the question of TDR vs. Capacitance may not be the right question.

Watch the webinar

In this webinar, Dr. Colin Campbell discusses the details regarding different ways to measure soil moisture and the theory behind the measurements.  In addition, he provides examples of field research and what technology might apply in each situation. The measurement methods covered are gravimetric sampling, dielectric methods including TDR and FDR/capacitance, neutron probe, and dual needle heat pulse.

 

Get more information on applied environmental research in our

Take our Soil Moisture Master Class

Six short videos teach you everything you need to know about soil water content and soil water potential—and why you should measure them together.  Plus, master the basics of soil hydraulic conductivity.

Watch it now—>

Download the “Researcher’s complete guide to soil moisture”—>

Soil Sensors Help Thousand-Year-Old Levees Protect Residents of the Secchia River Valley

In Italy, on January of 2014, one of the Secchia river levees failed, causing millions of dollars in flood damage and two fatalities. Concerned with preventing similar disasters, scientists and geotechnical engineers are using soil sensors to investigate solutions in a project called, INFRASAFE (Intelligent monitoring for safe infrastructures) funded by the Emilia Romagna Region (Italy) on European Funds.  

Secchia river running through Italy

Secchia river in Italy (Image: visitsassuolo.it)

Professor Alberto Lamberti, Professor Guido Gottardi, Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna, along with Prof. Marco Bittelli, University of Bologna professor of Soil and Environmental Physics, installed soil sensors along some transects of the Secchia river to monitor water potential and piezometric pressure.  They want to study properties of the compacted levee “soil”, during intense flooding.  Bittelli comments, “Rainfall patterns are changing due to climate change, and we are seeing more intense floods. There is a concern about monitoring levees so that we can, through studying the process, eventually create a warning system.”  

Image of a white van parked on a road next to a trench built for burying sensor cables

Trench for burying sensor cables.

What Are The Levees Made Of?

Amazingly, some of these levees are very old, built at the beginning of the second millennium to protect the Secchia valley population from floods. “These rudimentary barrages were the starting point of the huge undertakings, aiming at the regulation and stabilization of the river, which were gradually developed and expanded in the following centuries…building up a continuous chain all along the river.” (Marchii et. al., 1995)

Vegetation in the Secchia River Floodplain

Vegetation in the Secchia River floodplain.

Unlike natural soil with horizons, the soil that makes up the levees is made up of extremely compact clay and other materials, which will pose challenges to the research team in terms of sensor installation.  The team will use soil sensors to determine when the compacted material that makes up the levees gets so saturated it becomes weak.  Bittelli says, “We are looking at the mechanical properties of the levees, but mechanical properties are strongly dependent on hydraulic properties, particularly soil water potential (or soil suction).  A change in water potential changes the mechanical properties and weakens the structure.”  This can happen either when a soil dries below an optimal limit or wets above it; the result is a weakened barrier that can fail under load.

Image of a research team using an installation tool to install water content sensors

Here the team uses an installation tool to install water content sensors.

Soil Sensors Present Installation Challenges

To solve the installation problems, the team will use a specialized installation tool to insert their water content sensors.  Bittelli says, “Our main challenge is to install sensors deep into the levees without disturbing the soil too much.  It’s very important to have this tool because clearly, we cannot dig out a levee; we might be the instigator of a flood. So it was necessary for us to be able to install the sensors in a relatively small borehole.”  The researchers will install the sensors farther down than the current tool allows, so they are modifying it to go down to eight or ten meters.  Bittelli explains, “We used a prototype installation tool which is two meters long. We modified it in the shop and extended it to six meters to be able to install water content sensors at further depths.”

Another challenge facing the research team is how to install water potential sensors without disturbing the levee.  Marco explains, “We placed an MPS-6 (now called TEROS 21) into a cylinder of local soil prepared in the lab. A sort of a muffin made of soil with an MPS-6 inside. Then we lowered the cylinder into the borehole, installed the sensor inside, and then slid it down into the hole.  Our goal is to try and keep the structure of the soil intact. Since the cylinder is made of the same local soil, and it is in good contact with the borehole walls, hydraulic continuity will be established.”

Image researcher placing an MPS-6 into a cylinder of soil

Researchers placed an MPS-6 into a cylinder of local soil prepared in the lab.

Unlike installing water content sensors, matric potential sensors don’t need to be installed in undisturbed soil but only require good contact between the sensor and the bulk soil so liquid water can easily equilibrate between the two. The researchers are also contemplating using a small camera with a light so they can see from above if the installation is successful.  

Find Out More

The researchers will collect data at two experimental stations, one on the Po river, and one on the Secchia River. So far, the first installation was successfully performed, and data are collected from the website. Bitteli says the first installation included water content, temperature, and electrical conductivity sensors, water potential sensors, and tensiometers connected to a wireless network that will transmit all the data to a central office for analysis.

You can read more about this project and how it’s progressing here.

Get more information on applied environmental research in our

Download the “Researcher’s complete guide to water potential”—>

Download the “Researcher’s complete guide to soil moisture”—>

Soil Moisture: An Important Parameter in Weather Monitoring

CoCoRaHS and Weather Monitoring

Each time a rain, hail, or snow storm crosses over your area, volunteers are taking precipitation measurements that are then used to analyze situations ranging from water resource availability to severe storm warnings.  

Water droplets falling onto a larger body of water

CoCoRaHS precipitation data is used by many high profile organizations.

CoCoRaHS (Community Collaborative Rain, Hail and Snow Network) is a non-profit community-based network of volunteers of all ages and backgrounds working together to measure and map precipitation (rain, hail, and snow).  Their data is used by the National Weather Service, meteorologists, hydrologists, emergency managers, city utilities, USDA, engineers, farmers, and more.  The organization will soon add another layer to their weather-monitoring efforts:  soil moisture measurement.

Image of flooding high enough to reach the branches of a tree

In 1997, a localized flooding event in Fort Collins, Colorado was not well-warned due to lack of high-density precipitation observation.

Why Soil Moisture?

CoCoRaHS originated as the brain child of Nolan Doesken, the state climatologist of Colorado,  in 1997 in response to a localized flooding event in Fort Collins, CO that was not well-warned due to lack of high-density precipitation observations.  Ten years ago the Colorado Climate Center began a partnership with the National Integrated Drought Information System to establish the first regional drought early warning system. This particular system would serve the Upper Colorado River Basin and eastern Colorado.

From the beginning, Nolan was thinking about soil moisture.  He says, “When we first started this project, we identified one weakness of the current climate monitoring systems as the inability to quantitatively assess soil moisture.  Soil moisture is critical as it affects both short-term weather forecasts and long-term seasonal forecasts, which are important for drought early warning and avoiding the agricultural consequences of too much or too little soil moisture.”It wasn’t until years later in the drought of 2012, which developed rapidly in the mid and late spring across the intermountain west and central plains that Nolan began planning to use CoCoRaHS as a vehicle for improving the soil moisture aspect of drought early warning.

Dusty plants on the side of a dirt road

The organization intends to measure soil moisture using the gravimetric method.

How Will Volunteers Measure Soil Moisture?

Historically, CoCoRaHS has had success using low-cost measurement tools, stressing training and education, and using an interactive website to provide the highest quality data, and soil moisture will be no different.  The organization intends to measure soil moisture using the gravimetric method, where the user will take samples using a soil ring, dry samples in their own oven, and measure sample weight with an electronic scale. Peter Goble, a research assistant at Colorado State, has developed the measurement protocols that volunteers will follow.  He says, “We have installed several different types of soil sensors and tried gravimetric techniques in a field next to the center, and our experience has helped us set up a protocol that gets observers as educated as they can be by the time they take their measurements. The coring device we use is something that came about through trial and error. We were trying to reconcile the fact that we really wanted deeper root zone measurements in order to satisfy drought early-warning-system users, and the need for an inexpensive set of standardized materials that we could send out to observers in a kit.”  Volunteers will take soil samples at each point in a grid pattern, both at the surface and at the 7-9 inch level near the root zone.

What will Happen to the Data?

Initially, while the program is in its test phase, the data will be put in a spreadsheet and shared. However, once CoCoRaHS has finished sending this protocol around the nation to a group of alpha testers, they’ll set up a website infrastructure enabling volunteers to enter their VWC data directly into the CoCoRaHS website.

Cracked and dried soil with desert plants around and a setting sun

The need for soil moisture measurement in weather monitoring will outweigh the volunteers’ ability to measure, but there is a solution.

Why the Gravimetric Method?

Nolan says the challenge of water content is that soil is highly variable across space.  And if you add issues like sensor performance, improper installation of sensors, problems with soil contact, changes in bulk density, and soil compaction, you end up with inconsistent data.  The gravimetric method will avoid inconsistencies in spatial measurements and ensure higher quality data.

An Overwhelming Task

Nolan says the need for soil moisture measurement in weather monitoring will outweigh the volunteers’ ability to measure, but there is a solution. “People who use soil moisture data in atmospheric applications need high resolution, gridded information in every square kilometer across the country, but it will happen through modeling.  The measurements we take of precipitation and soil moisture will help in the refinement of the weather modules the atmospheric scientists will use as input to their weather prediction models.”

See weather sensor performance data for the ATMOS 41 weather station.

Explore which weather monitoring system is right for you.

Download the “Researcher’s complete guide to soil moisture”—>

Get more information on applied environmental research in our

Mesh Wireless Sensor Networks: Will Their Potential Ever Be Realized? (Part 2)

Soil ecologist Dr. Kathy Szlavecz and her husband, computer scientist, Dr. Alex Szalay, both at Johns Hopkins University, are testing a wireless sensor network (WSN; Mesh Sensor Network), developed by Dr. Szalay, his colleague, computer scientist Dr. Andreas Terzis, and their graduate students (read part 1). Mesh networks generate thousands of measurements monthly from wireless sensors. The husband/wife team says that WSN’s have the potential to revolutionize soil ecology by generating a previously impossible spatial resolution.  This week, read about the results of their experiments.

Worm in the Mud

Overall, the experiments were a scientific success, exposing variations in the soil microclimate not previously observed.

Results and Challenges:

About the performance of the network, Kathy says, “Overall, our experiments were a scientific success, exposing variations in the soil microclimate not previously observed. However, we encountered a number of challenging technical problems, such as the need for low-level programming to get the data from the sensor into a usable database, calibration across space and time, and cross-reference of measurements with external sources.

The ability of mesh networks that generate so much data also presents a data management challenge. Kathy explains, “We didn’t always have the resources or personnel who could organize the data.  We needed a dedicated research assistant who could clean, handle, and organize the data. And the software wasn’t user-friendly enough.  We constantly needed computer science expertise, and that’s not sustainable.”  

The team also faced setbacks stemming from inconsistencies generated by new computer science students beginning work on the project as previous students graduated. This is why the team is wondering if a commercial manufacturer in the industrial sector would be a better option to help finish the development of the mesh network.

Mesh Wireless Sensor Network on rocks in the Atacama desert

This deployment is located in the Atacama desert in Chile. Atacama is one of the highest, driest places on Earth. These sensors are co-located with the Atacama Cosmological Telescope. The goal of this deployment is to understand how the hardware survives in an extreme environment. In addition to the cold, dry climate, the desert is exposed to high UV radiation. These boxes are collecting soil temperature, soil moisture and soil CO2 data. (Image: lifeunderyourfeet.org)

What’s Next?

Kathy and Alex say that mesh sensor network design has room for improvement.  Through their testing, the research team learned that, contrary to the promise of cheap sensor networks, sensor nodes are still expensive. They estimated the cost per mote including the main unit, sensor board, custom sensors, enclosure, and the time required to implement, debug and maintain the code to be around $1,000.  Kathy says, “The equipment cost will eventually be reduced through economies of scale, but there is clearly a need for standardized connectors for connecting external sensors and in general, a need to minimize the amount of custom hardware work necessary to deploy a sensor network.”  The team also sees a need for the development of network design and deployment tools that will instruct scientists where to place gateways and sensor relay points. These tools could replace the current labor-intensive trial and error process of manual topology adjustment that disturbs the deployment area.

Image of deployment locations in fields of the farming systems

This deployment is located in the fields of the farming system project at BARC. Soil temperature and moisture probes are placed at various locations of a corn-soybean-wheat rotation. The goal is to understand and explain soil heterogeneity and to provide background data for trace gas measurements. (Image: Lifeunderyourfeet.org)

Future Requirements:

According to Kathy, wireless sensor networks promise richer data through inexpensive, low-impact collection—an attractive alternative to larger, more expensive data collection systems. However, to be of scientific value, the system design should be driven by the experiment’s requirements rather than technological limitations. She adds that focusing on the needs of ecologists will be the key to developing a wireless network technology that will be truly useful.  “While the computer science community has focused attention on routing algorithms, self-organization, and in-network processing, environmental monitoring applications require quite a different emphasis: reliable delivery of the majority of the data and metadata to the scientists, high-quality measurements, and reliable operation over long deployment cycles. We believe that focusing on this set of problems will lead to interesting new avenues in wireless sensor network research.” And, how to package all the data collected into a usable interface will also need to be addressed in the future.

You can read about Kathy’s experiments in detail at Lifeunderyourfeet.org.

Download the “Researcher’s complete guide to soil moisture”—>

Get more information on applied environmental research in our