You’ve buried soil water content and water potential sensors in the ground, installed an ATMOS 41 in the field, and set up your ZL6 data logger. Your network of instruments has been collecting data for days, weeks, or even all season. Now what? Performing soil moisture data analysis for your research location is one thing. Knowing how to extrapolate meaningful inferences and conclusions to understand what is happening and troubleshoot issues is completely different.
In this article, we will step through multiple data sets to understand how soil water content, soil temperature, soil water potential, and atmospheric measurements can be used to discover the meaning behind the traces. Within this article you will learn how to identify the following events in your data:
Behavior of soil moisture sensors in different soil types
Infiltration
Flooding
Soil cracking
Freezing
Spatial variability
Temperature effects
Diurnal patterns due to hydraulic redistribution
Broken sensors
Installation problems
Each example will be represented by a graph. It is not necessary to understand every aspect of information within these graphs. Each one is used as an illustration of common soil moisture data patterns you might run into and how to extrapolate the most useful information possible from the patterns seen. Each graph will have a box in the upper right-hand side corner with the soil type and crop type so you have a better understanding of the variables at play.
All of the data provided was collected by data loggers, such as our ZL6 series, and uploaded to ZENTRA Cloud for remote viewing at the convenience of the user. All data sets are either from METER’s own instrumentation or are supplied by the data owner and are included with their permission.
Effects of soil types
In Figure 2 we see the data from an engineered loamy sand with a cover crop of turf grass. Our goal when executing our experiments in this example was to improve irrigation in turf grass. This grass had a fairly shallow root zone, the middle of which was about six cm deep and the bottom at about 10 cm. Over time, this example showed first relatively wet conditions to start through June and July, a fixed drying period condition in July and August, and drying until the cessation of water uptake in August and September.
This graph shows two soil moisture data types: volumetric water content on the left y-axis and matric potential, or water potential, on the right y-axis. Time is on the x-axis ranging from early summer to the start of fall. To understand what these data clusters can tell us, we must look at each data set individually.
Advances in sensor technology and software now make it easy to understand what’s happening in your soil, but don’t get stuck thinking that only measuring soil water content will tell you what you need to know.
Water content is only one side of a critical two-sided coin. To understand when to water, plant-water stress, or how to characterize drought, you also need to measure water potential.
Better data. Better answers.
Soil water potential is a crucial measurement for optimizing yield and stewarding the environment because it’s a direct indicator of the availability of water for biological processes. If you’re not measuring it, you’re likely getting the wrong answer to your soil moisture questions. Water potential can also help you predict if soil water will move, and where it’s going to go. Join METER soil physicist, Dr. Doug Cobos, as he teaches the basics of this critical measurement. Learn:
What is water potential?
Why water potential isn’t as confusing as it’s made out to be
Common misconceptions about soil water content and water potential
Dr. Cobos is a Research Scientist and the Director of Research and Development at METER. He also holds an adjunct appointment in the Department of Crop and Soil Sciences at Washington State University where he co-teaches Environmental Biophysics. Doug’s Masters Degree from Texas A&M and Ph.D. from the University of Minnesota focused on field-scale fluxes of CO2 and mercury, respectively. Doug was hired at METER to be the Lead Engineer in charge of designing the Thermal and Electrical Conductivity Probe (TECP) that flew to Mars aboard NASA’s 2008 Phoenix Scout Lander. His current research is centered on instrumentation development for soil and plant sciences.
What was the life of a scientist like before modern measurement techniques? In our latest podcast, Campbell Scientific’s Ed Swiatek and METER’s Dr. Gaylon Campbell discuss their association with three pioneers of environmental measurement.
Learn what it was like to practice science on the cutting edge. Discover the creative lengths they went to and what crazy things they cobbled together to get the measurements they needed.
Dr. Marco Bittelli, soil physics wizard and pretty much the most interesting guy we know, discusses his exciting research projects in Italy and Antarctica. Plus, he shares insights on cutting-edge measurement methods, climate change, jazz guitar music, and more.
Marco Bittelli, PhD, is an associate professor in the Department of Agricultural and Food Science at the University of Bologna in Italy.
Researchers measure evapotranspiration and precipitation to understand the fate of water—how much moisture is deposited, used, and leaving the system. But if you only measure withdrawals and deposits, you’re missing out on water that is (or is not) available in the soil moisture savings account. Soil moisture is a powerful tool you can use to predict how much water is available to plants, if water will move, and where it’s going to go.
Soil moisture 101 explores soil water content vs. soil water potential
What you need to know
Soil moisture is more than just knowing the amount of water in soil. Learn basic principles you need to know before deciding how to measure it. In this 20-minute webinar, discover:
Why soil moisture is more than just an amount
Water content: what it is, how it’s measured, and why you need it
Water potential: what it is, how it’s different from water content, and why you need it
The HYPROP and WP4C enable fast, accurate soil moisture release curves (soil water characteristic curves-SWCCs), but lab measurements have some limitations: sample throughput limits the number of curves that can be produced, and curves generated in a laboratory do not represent their in situ behavior. Lab-produced soil water retention curves can be paired with information from in situ moisture release curves for deeper insight into real-world variability.
Soil water characteristic curves help determine soil type, soil hydraulic properties, and mechanical performance and stability
Moisture release curves in the field? Yes, it’s possible.
Colocating water potential sensors and soil moisture sensorsin situ add many more moisture release curves to a researcher’s knowledge base. And, since it is primarily the in-place performance of unsaturated soils that is the chief concern to geotechnical engineers and irrigation scientists, adding in situ measurements to lab-produced curves would be ideal.
In this brief 20-minute webinar, Dr. Colin Campbell, METER research scientist, summarizes a recent paper given at the Pan American Conference of Unsaturated Soils. The paper, “Comparing in situ soil water characteristic curves to those generated in the lab” by Campbell et al. (2018), illustrates how well in situ generated SWCCs using the TEROS 21 calibrated matric potential sensor and METER’s GS3 water content sensor compare to those created in the lab.
Whether researchers measure soil hydraulic properties in the lab or in the field, they’re only getting part of the picture. Laboratory systems are highly accurate due to controlled conditions, but lab measurements don’t take into account site variability such as roots, cracks, or wormholes that might affect soil hydrology. In addition, when researchers take a sample from the field to the lab, they often compress soil macropores during the sampling process, altering the hydraulic properties of the soil.
Roots, cracks, and wormholes all affect soil hydrology
Field experiments help researchers understand variability and real-time conditions, but they have the opposite set of problems. The field is an uncontrolled system. Water moves through the soil profile by evaporation, plant uptake, capillary rise, or deep drainage, requiring many measurements at different depths and locations. Field researchers also have to deal with the unpredictability of the weather. Precipitation may cause a field drydown experiment to take an entire summer, whereas in the lab it takes only a week.
The big picture—supersized
Researchers who use both lab and field techniques while understanding each method’s strengths and limitations can exponentially increase their understanding of what’s happening in the soil profile. For example, in the laboratory, a researcher might use the PARIO soil texture analyzer to obtain accurate soil texture data, including a complete particle size distribution. They could then combine those data with an HYPROP-generated soil moisture release curve to understand the hydraulic properties of that soil type. If that researcher then adds high-quality field data in order to understand real-world field conditions, then suddenly they’re seeing the larger picture.
Table 1. Lab and field instrument strengths and limitations
Below is an exploration of lab versus field instrumentation and how researchers can combine these instruments for an increased understanding of their soil profile. Click the links for more in-depth information about each topic.
Particle size distribution and why it matters
Soil type and particle size analysis are the first window into the soil and its unique characteristics. Every researcher should identify the type of soil that they’re working with in order to benchmark their data.
Particle size analysis defines the percentage of coarse to fine material that makes up a soil
If researchers don’t understand their soil type, they can’t make assumptions about the state of soil water based on soil moisture (i.e., if they work with plants, they won’t be able to predict whether there will be plant available water). In addition, differing soil types in the soil’s horizons may influence a researcher’s measurement selection, sensor choice, and sensor placement.
This week, guest author Dr. Michael Forster, of Edaphic Scientific Pty Ltd & The University of Queensland, writes about new research using irrigation curves as a novel technique for irrigation scheduling.
Growers do not have the time or resources to investigate optimal hydration for their crop. Thus, a new, rapid assessment is needed.
Measuring the hydration level of plants is a significant challenge for growers. Hydration is directly quantified via plant water potential or indirectly inferred via soil water potential. However, there is no universal point of dehydration with species and crop varieties showing varying tolerance to dryness. What is tolerable to one plant can be detrimental to another. Therefore, growers will benefit from any simple and rapid technique that can determine the dehydration point of their crop.
New research by scientists at Edaphic Scientific, an Australian-based scientific instrumentation company, and the University of Queensland, Australia, has found a technique that can simply and rapidly determine when a plant requires irrigation. The technique builds on the strong correlation between transpiration and plant water potential that is found across all plant species. However, new research applied this knowledge into a technique that is simple, rapid, and cost-effective, for growers to implement.
Current textbook knowledge of plant dehydration
The classic textbook values of plant hydration are field capacity and permanent wilting point, defined as -33 kPa (1/3 Bar) and -1500 kPa (15 Bar) respectively. It is widely recognized that there are considerable limitations with these general values. For example, the dehydration point for many crops is significantly less than 15 Bar.
Furthermore, values are only available for a limited number of widely planted crops. New crop varieties are constantly developed, and these may have varying dehydration points. There are also many crops that have no, or limited, research into their optimal hydration level. Lastly, textbook values are generated following years of intensive scientific research. Growers do not have the time, or resources, to completely investigate optimal hydration for their crop. Therefore, a new technique that provides a rapid assessment is required.
How stomatal conductance varies with water potential
There is a strong correlation between stomatal conductance and plant water potential: as plant water potential becomes more negative, stomatal conductance decreases. Some species are sensitive and show a rapid decrease in stomatal conductance; other species exhibit a slower decrease.
Plant physiologist refer to P50 as a value that clearly defines a species’ tolerance to dehydration. One definition of P50 is the plant water potential value at which stomatal conductance is 50% of its maximum rate. P50 is also defined as the point at which hydraulic conductance is 50% of its maximum rate. Klein (2014) summarized the relationship between stomatal conductance and plant water potential for 70 plant species (Figure 1). Klein’s research found that there is not a single P50 for all species, rather there is a broad spectrum of P50 values (Figure 1).
Figure 1. The relationship between stomatal conductance and leaf water potential for 70 plant species. The dashed red lines indicate the P80 and P50 values. The irrigation refill point can be determined where the dashed red lines intersect with the data on the graph. Image has been adapted from Klein (2014), Figure 1b.
Taking advantage of P50
The strong, and universal, relationship between stomatal conductance and water potential is vital information for growers. A stomatal conductance versus water potential relationship can be quickly, and easily, established by any grower for their specific crop. However, as growers need to maintain optimum plant hydration levels for growth and yield, the P50 value should not be used as this is too dry. Rather, research has shown a more appropriate value is possibly the P80 value. That is, the water potential value at the point that stomatal conductance is 80% of its maximum.
Irrigation Curves – a rapid assessment of plant hydration
Research by Edaphic Scientific and University of Queensland has established a technique that can rapidly determine the P80 value for plants. This is called an “Irrigation Curve” which is the relationship between stomatal conductance and hydration that indicates an optimal hydration point for a specific species or variety.
Once P80 is known, this becomes the set point at which plant hydration should not go beyond. For example, a P80 for leaf water potential may be -250 kPa. Therefore, when a plant approaches, or reaches, -250 kPa, then irrigation should commence.
P80 is also strongly correlated with soil water potential and, even, soil volumetric water content. Soil water potential and/or content sensors are affordable, easy to install and maintain, and can connect to automated irrigation systems. Therefore, establishing an Irrigation Curve with soil hydration levels, rather than plant water potential, may be more practical for growers.
Example irrigation curves
Irrigation curves were created for a citrus (Citrus sinensis) and macadamia (Macadamia integrifolia). Approximately 1.5m tall saplings were grown in pots with a potting mixture substrate. Stomatal conductance was measured daily, between 11am and 12pm, with an SC-1 Leaf Porometer. Soil water potential was measured by combining data from an MPS-6 (now called TEROS 21) Matric Potential Sensor and WP4 Dewpoint Potentiometer. Soil water content was measured with a GS3 Water Content, Temperature and EC Sensor. Data from the GS3 and MPS-6 sensors were recorded continuously at 15-minute intervals on an Em50 Data Logger. When stomatal conductance was measured, soil water content and potential were noted. At the start of the measurement period, plants were watered beyond field capacity. No further irrigation was applied, and the plants were left to reach wilting point over subsequent days.
Figure 2. Irrigation Curves for citrus and macadamia based on soil water potential measurements. The dashed red line indicates P80 value for citrus (-386 kPa) and macadamia (-58 kPa).
Figure 2 displays the soil water potential Irrigation Curves, with a fitted regression line, for citrus and macadamia. The P80 values are highlighted in Figure 2 by a dashed red line. P80 was -386 kPa and -58 kPa for citrus and macadamia, respectively. Figure 3 shows the results for the soil water content Irrigation Curves where P80 was 13.2 % and 21.7 % for citrus and macadamia, respectively.
Figure 3. Irrigation Curves for citrus and macadamia based on soil volumetric water content measurements. The dashed red line indicates P80 value for citrus (13.2 %) and macadamia (21.7 %).
From these results, a grower should consider maintaining soil moisture (i.e. hydration) above these values as they can be considered the refill points for irrigation scheduling.
Further research is required
Preliminary research has shown that an Irrigation Curve can be successfully established for any plant species with soil water content and water potential sensors. Ongoing research is currently determining the variability of generating an Irrigation Curve with soil water potential or content. Other ongoing research includes determining the effect of using a P80 value on growth and yield versus other methods of establishing a refill point. At this stage, it is unclear whether there is a single P80 value for the entire growing season, or whether P80 shifts depending on growth or fruiting stage. Further research is also required to determine how P80 affects plants during extreme weather events such as heatwaves. Other ideas are also being investigated.
For more information on Irrigation Curves, or to become involved, please contact Dr. Michael Forster: [email protected]
Reference
Klein, T. (2014). The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours. Functional Ecology, 28, 1313-1320. doi: 10.1111/1365-2435.12289
Water potential is the most fundamental and essential measurement in soil physics because it describes the force that drives water movement.
Water potential helps researchers determine how much water is available to plants.
Making good water potential measurements is largely a function of choosing the right instrument and using it skillfully. In an ideal world, there would be one instrument that simply and accurately measured water potential over its entire range from wet to dry. In the real world, there is an assortment of instruments, each with its unique personality. Each has its quirks, advantages, and disadvantages. Each has a well-defined range.
Below is a comparison of water potential instruments and the ranges they measure.
A comparison of water potential instrument ranges
To learn more about measuring water potential, see the articles or videos below:
Soil moisture release curves have always had two weak areas: a span of limited data between 0 and -100 kPa and a gap around field capacity where no instrument could make accurate measurements.
Using HYPROP with the redesigned WP4C, a skilled experimenter can now make complete high-resolution moisture release curves.
Between 0 and -100 kPa, soil loses half or more of its water content. If you use pressure plates to create data points for this section of a soil moisture release curve, the curve will be based on only five data points.
And then there’s the gap. The lowest tensiometer readings cut out at -0.85 MPa, while historically the highest WP4 water potential meter range barely reached -1 MPa. That left a hole in the curve right in the middle of plant-available range.