Data Logger Dilemma: To Bury, or Not to Bury—An Update
Recently, we wrote about scientists who were burying their data loggers (read it here). Radu Carcoana, research specialist and Dr. Aaron Daigh, assistant professor at North Dakota State University, used paint cans to completely seal their data loggers before burying them in the fall of 2015.
They drilled ports for the sensor cables, sealed them up, and when they needed to collect data, they dug up the cans, retrieved the instruments, and downloaded the data in a minute or less.
Here Radu gives an update of what happened when he dug up his buried instruments in the spring.
Results of the Paint Can Experiment
In May of this year, we dug up eighteen units (one data logger and four soil moisture sensors per unit) left in the field since November 2015—over six months.
Did moisture get into the paint cans? —We found only three cans with water in them, purely due to installation techniques used for that specific unit. The other fifteen units were bone dry, although total precipitation for the month of April only amounted to 3.63 inches, plus the snow melt.
How was data recording and recovery? —For six months, every 30 minutes the soil moisture sensors took readings, the data logger recorded, and we retrieved all of the data, complete and unaltered.
What about power consumption? The batteries were good —over 90% did not need replacement. The power budget provided by five AA batteries was more than enough for reading four soil moisture sensors at 30-minute intervals.
What Happens Now?
In the spring of this year, we installed 18 more units in the third farm field, right after planting soya. We now have 36 individual units (~$1,000 value each unit) buried in the ground in the middle of a field planted with corn or soybean, since the beginning of May.
On October 13-14 (after 5 months), we accessed the first twelve units (Farm A). All 30 minutes of data was read, recorded, and downloaded (since May). The batteries and the other accessories were replaced, and then we sealed and reburied the cans. Only one unit out of twelve had an issue and was replaced: the battery exploded in the can (editor’s note: battery explosion is usually caused by a manufacturing defect and the risk can be lessened by purchasing higher quality batteries, although all types are susceptible to some degree). Since battery leakage will often corrode everything the acid touches, the data logger had to be sent back for repair and there may be partial data loss. The other 24 units (Farm B and C) will be accessed next week, weather permitting.
Is the Paint Can Method Worth it?
We will continue to monitor and retrieve the data from the buried data loggers (We don’t use data loggers suited for wireless communication, because several factors guided us not to). The paint can system works very well if the installation is done correctly, with great attention to detail, and it costs only $2.00/can. However, there are improvements that could be made in order to have this method become a standard in soil research. For instance, though we are still using paint cans and other common materials, advancements in the design of waterproof containers and sturdiness would be a huge step forward. This is just a well thought out concept – a prototype. It proves that burying electronics for a longer period of time can be done if properly executed.
Note: METER’s (formerly Decagon) official position is that you should never bury your data logger. But we couldn’t resist sharing a few stories of scientists who have figured out some innovative methods which may or may not be successful, if tried at other sites.
Download the “Researcher’s complete guide to soil moisture”—>
Download the “Researcher’s complete guide to SDI-12″—>
Get more information on applied environmental research in our