Piñon Pine: Studying the Effects of Climate Change on Drought Tolerance
In the name of science, Henry Adams has killed a lot of trees. Adams, a PhD student at the University of Arizona, is studying the effect of climate change and drought on Piñon Pines. The Piñon Pine, a conifer with an extensive root system, grows at high elevations in the Southwest. Its root system makes the Piñon Pine remarkably drought tolerant, but in 2002- 03, an extended drought in combination with a bark beetle outbreak killed 12,000 hectares of the trees. It was a 100 year drought, the driest period on record, and interestingly it coincided with temperatures 2 to 3˚C above recorded averages.
Research in Biosphere 2
Adams and his advisors wondered if increasing temperatures due to climate change might exacerbate the effects of drought and accelerate tree die-off. The University of Arizona has an unusual opportunity to test drought conditions and temperature change in its Biosphere 2 lab. Biosphere 2, a unique 3-acre enclosed “living laboratory” in the high Arizona desert, once hosted 8 people for two years of self-contained survival living. Now it hosts research projects, and Adams was able to use space inside to induce drought in two separate treatments of transplanted Piñon pines, one at ambient temperatures and one at temperatures 4˚C above ambient.
Sobering Outlook for the Piñon Pine
“Obviously, the warmer trees should die first,” says Adams. “But we want to test whether temperature change, independent of other factors, accelerates mortality.” If that acceleration in fact occurs, a shorter drought, the kind the Piñon Pine has historically been able to wait out, might cause a significant die-off.
Measuring Drought Response
Naturally, Adams and his colleagues did more than just watch how fast trees would die without water. They also studied the trees physiological response to drought, measuring gas exchange, water potential, and stomatal conductance. To measure stomatal conductance, they used a leaf porometer, making almost 9,000 separate measurements in sessions that lasted from sunup to sundown on one very long day once each week.
Stomatal Conductance in Conifers
There isn’t much guidance in the porometer manual for people who want to use it on conifers, so Adams “played around with it a little bit” on non-drought stressed trees before he started his study. He found that the best way to get good readings was to cover the aperture with a single layer of needles. “Needles are this three-dimensional thing,” he explains. “They have stomata on several sides, depending on the species. If you imagine that the fingers on your hand are needles sticking up from a branch, we just took those and pushed them together to make sure that there was just a one needle thick covering over the aperture. If you spread your fingers, that’s what it would be like if you didn’t totally cover the aperture-then you underestimate the conductance. We also found that if we stuck several layers in there, we could drive the conductance number up.
Next week: Find out how the researchers made comparisons at leaf level, transplanted the trees, and future implications for the Piñon Pine.
Download the “Researcher’s complete guide to water potential”—>
Get more information on applied environmental research in our