Skip to content

Posts tagged ‘climate change’

Predicting the Stability of Rangeland Productivity to Climate Change

Dr. Lauren Hallett, researcher at  the University of California, Berkeley, recently conducted a study testing the importance of compensatory dynamics on forage stability in an experimental field setting where she manipulated rainfall availability and species interactions. She wanted to understand how climate variability affected patterns of species tradeoff in grasslands over time and how those tradeoffs affected the stability of things like forage production across changing rainfall conditions.

field with species tradeoffs standing in the brush

Species tradeoffs could help mitigate the negative effects of climate variability on overall forage production.

Species Tradeoff

A key mechanism that can lead to stability in forage production is compensatory dynamics, in which the responses of different species  to climate fluctuations result in tradeoffs between functional groups over time. These tradeoffs could help mitigate the negative effects of climate variability on overall forage production.  Dr. Hallett comments, “In California grasslands, there’s a pattern that is part of rangeland dogma, that in dry years you have more forbs, and in wet years you have more grasses. I wondered if you could manage the system so that both forbs and grasses are present in the seed bank, able to respond to climate.  This would perhaps buffer community properties, like soil cover for erosion control and forage production in terms of biomass, from the effects of climate variability.”

Tradeoff in a green field, aerial view

In areas experiencing moderate grazing, there was a strong species tradeoff between grasses and forbs.

Manipulating Species Composition

Dr. Hallett capitalized on the pre-existing grazing manipulation that her lab had done over the previous four years.  The grazing she replicated for this study was experimentally controlled, making it easier to ensure consistency.  She built rainout shelters where she collected the water and applied it to dry versus wet plots.  She also manipulated species composition, allowing only grasses, only forbs, or a mix of the two.  These treatments allowed her to study changes in cover and biomass.

Hallett used soil moisture probes and data loggers to characterize the treatment effects of this experiment and to parameterize models that predict rangeland response to climate change.  She says, “I wanted to verify that my rainfall treatments were getting a really strong soil moisture dynamic, and I found the shelters and the irrigation worked really well.”  Along with above-ground vegetation, she collected soil cores and looked at nutrient differences in conjunction with soil moisture.  Since her field site is located within the Sierra Foothills Research and Extension Center, Dr. Hallett was able to rely on precipitation data that was already measured on-site.  


Dr. Hallett found that in areas experiencing moderate grazing, there was a strong species tradeoff between grasses and forbs.  She comments, “I had a seedbank that had both functional groups represented, and those tradeoffs did a lot to stabilize cover over time.”

When Dr. Hallett replicated the experiment in an area that had a history of low grazing, she found that the proportion of forbs wasn’t as high in the seedbank.  As a consequence, there was a major loss of cover in the dry plots.  She explains, “When the grass died, there weren’t many forbs to replace it, and you ended up with a lot of bare ground. The areas that were lightly grazed had more litter, so initially, the soil moisture was okay, but as the season progressed into a dry condition and the litter decomposed, there wasn’t enough new vegetation to stabilize the soil.”  As a result, Dr. Hallett thinks in low-grazed areas it’s important to have an intermediate level of litter. She says, “You need enough litter to increase soil moisture, but not so much that it would suppress germination of the forbs because as the season progresses and gets really dry, if you don’t have forbs in the system, you lose a lot of ground cover.”

Surprises Lead to A New Study

Dr. Hallett was surprised that within her three treatments there seemed to be differences in when the functional groups were drying down the soil.  This inspired new questions, leading her to use her dissertation data to generate a larger grant through the USDA.  Her new study will perform extensive rainfall manipulations to measure the effects of early-season versus late-season dryout, and vary species within those parameters.  She says, “One of the reasons you have grass years versus forb years is the timing of rainfall.  For instance, if you have a really dry fall, you tend to have more forbs because their seedlings are more drought resistant.  Conversely, if you have a wet fall, you tend to see more grasses because you have continual germination throughout the season. So, the timing of rainfall matters in terms of what species are in the system.  We are going to look at the coupling between the species that gets selected for the fall versus what would be able to grow well in the spring, and we will be studying how that affects a whole range of things such as ground cover, above-ground production for forage, below-ground investment of different functional groups, and how these things might relate to nutrient cycling and carbon storage.”

You can read more about Dr. Hallett’s rangeland research and her current projects here.  

Download the “Researcher’s complete guide to soil moisture”—>

Get more information on applied environmental research in our

Understanding the Influence of Coastal Fog on the Water Relations of a California Pine Forest

Forests along the California coast and offshore islands experience coastal fog in summer, when conditions are otherwise warm and dry. Since fog-water inputs directly augment water availability to forests during the dry season, a potential reduction of fog due to climate change would place trees at a higher risk of water stress and drought-induced mortality.  Dr. Sara Baguskas completed her Ph.D. research in the geography department at UC Santa Barbara on how variation in fog-water inputs impact the water relations of a rare, endemic tree species, Bishop pine, located on Santa Cruz Island in Channel Islands National Park. The goal of her study was to enhance our ability to predict how coastal forests may respond to climate change by better understanding how fog-water inputs influence the water budget of coastal forests.

Fog on Trees

Dr. Baguskas’ study seeks a better understanding of how fog-water inputs influence the water budget of coastal forests.

Fog Manipulation

Santa Cruz Island supports the southern extent of the species range in California, thus it is where we would expect to see a reduction in the species range in a warmer, drier, and possibly less foggy future. To advance our mechanistic understanding of how coastal fog influences the physiological function of Bishop pines, Dr. Baguskas conducted a controlled greenhouse experiment where she manipulated fog-water inputs to potted Bishop pine saplings during a three-week drydown period. She installed soil moisture (VWC) sensors horizontally into the side of several pots of sapling trees at two different depths (2 cm and 10 cm) and exposed the pines to simulated fog events with a fog machine.

In one group of plants, Baguskas let fog drip down to the soil, and in another treatment, she prevented fog drip to the soil so that only the canopies were immersed in fog.  She adds, “Leaf wetness sensors were an important complement to soil moisture probes in the second treatment because I needed to demonstrate that during fog events, the leaves were wet and soil moisture did not change.” Additionally, Baguskas used a photosynthesis and fluorescence system to measure photosynthetic rates in each group.

Fog in pine trees from the ground

The fog events had a significant, positive effect on the photosynthetic rate and capacity of the pines.


Dr. Baguskas found that the fog events had a significant, positive effect on the photosynthetic rate and capacity of the pines.  The combination of fog immersion and fog drip had the greatest effect on photosynthetic rates during the drydown period, so, in essence, she determined that fog drip to the soil slows the impact of drydown.  

“But,” she says, “when I looked at fog immersion alone, when the plant canopies were wet by fog with no drip to the soil, I also saw a significant improvement in the photosynthetic rates of these plants compared to the trees that received no fog at all, suggesting that there could have been indirect foliar uptake of water through these leaves which enhanced performance.”  An alternative interpretation of that, Baguskas adds, is that nighttime fog events reduced soil evaporation rates, resulting in less evaporative loss of soil moisture.

Dr. Baguskas says her “canopy immersion alone” data are consistent with other research: Todd Dawson, Gregory Goldsmith, Kevin Simmonin, Carter Berry, and Emily Limm have all found that when you wet plant leaves, it has a physiological effect, suggesting the plants are taking water up through their leaves and not relying as much on soil moisture.  (These authors performed different types of experiments, but their papers serve as reference studies). Baguskas says, “My results suggest that is what’s going on, but it’s not as definitive as other studies that have actually worked on tracking the water through leaves using a stable isotope approach.”  

Lessons Learned

Though Dr. Baguskas did not monitor soil temperature in this study, she says that in the future, she will always combine temperature data with soil moisture data.  She comments, “Consistently, the soil moisture in the “canopy-immersed only” plants was slightly elevated over the soil moisture in the control plants.  It made me wonder if this was a biologically meaningful result. Does it support the fact that if plants are taking up water through their leaves, they don’t rely on as much soil moisture?  Or did my treatment change soil temperature, and is that having a confounding effect on my results?  What I’ve learned from this, is that in the future I will always use soil probes with temperature sensors because you may not know until you see your results if temperature might be important.”

Future Fog Studies

Baguskas is a USDA-NIFA postdoctoral Research Fellow working with Dr. Michael Loik in the Environmental Studies Department at UC Santa Cruz. She continues to study coastal fog, but now in strawberry fields. Her current research questions are focused on integrating coastal fog into water-use decisions in coastal California agriculture. She loves the work and continues to rely on soil moisture sensors to make meaningful and reliable environmental measurements in the field and greenhouse.

Download the “Researcher’s complete guide to soil moisture”—>

Download the “Researcher’s complete guide to water potential”—>

Get more information on applied environmental research in our