Skip to content

Posts tagged ‘ecosystem’

German Researchers Directly Measure Climate Change Effects Using TERENO Lysimeters

In Germany, scientists are measuring the effects of tomorrow’s climate change with a vast network of 144 large lysimeters.

Image of Lysimeters in there installation site

The goal of these lysimeters is to measure energy balance, water flux and nutrition transport, emission of greenhouse gases, biodiversity, and solute leaching into the groundwater.

In 2008, the Karlsruhe Institute of Technology began to develop a climate feedback monitoring strategy at the Ammer catchment in Southern Bavaria. In 2009, the Research Centre Juelich Institute of Agrosphere, in partnership with the Helmholtz-Network TERENO (Terrestrial Environmental Observatories) began conducting experiments in an expanded approach.  

Throughout Germany, they set up a network of 144 large lysimeters with soil columns from various climatic conditions at sites where climate change may have the largest impact.  In order to directly observe the effects of simulated climate change, soil columns were taken from higher altitudes with lower temperatures to sites at a lower altitude with higher temperatures and vice versa. Extreme events such as heavy rain or intense drought were also experimentally simulated.

Image of Lysimeter locations in Germany

Lysimeter locations in Germany

Georg von Unold, whose company (formerly UMS, now METER) built and installed the lysimeters comments on why the project is so important. “From a scientific perspective, we accept changes for whatever reason they may happen, but it is our responsibility to carefully monitor and predict how these changes cause floods, droughts, and disease. We need to be prepared to react if and before they affect us.”

How Big Are the Lysimeters?

Georg says that each lysimeter holds approximately 3,000 kilograms of soil and has to be moved under compaction control with specialized truck techniques.  He adds,The goal of these lysimeters is to measure energy balance, water flux and nutrition transport, emission of greenhouse gases, biodiversity, and solute leaching into the groundwater. Researchers measure the conditions of water balance in the natural soil surrounding the lysimeters, and then apply those same conditions inside the lysimeters with suction ceramic cups that lay across the bottom of the lysimeter.  These cups both inject and take out water to mimic natural or artificial conditions.”

Image of Lysimeters in a field and a diagram of whats inside the Lysimeters

Researchers use water content sensors and tensiometers to monitor hydraulic conditions inside the lysimeters.

Researchers monitor the new climate situation with microenvironment monitors and count the various grass species to see which types become dominant and which might disappear. They use water content sensors and tensiometers to monitor hydraulic conditions inside the lysimeters. The systems also use a newly-designed system to inject CO2 into the atmosphere around the plants and soil to study increased carbon effects.  Georg says, “We developed, in cooperation with the HBLFA Raumberg Gumpenstein, a new, fast-responding CO2 enrichment system to study CO2 from plants and soil respiration. We analyze gases like CO2, oxygen, and methane. The chambers are rotated from one lysimeter to another, working 24 hours, 7 days a week.  Each lysimeter is exposed only for a few minutes so as not to change the natural environment.”

Next week:  Read about the intense precision required to move the soil-filled lysimeters, how problems are prevented, and how the data is used by scientists worldwide.

Download the “Researcher’s complete guide to soil moisture”—>

Get more information on applied environmental research in our

Top Five Blog Posts in 2016

In case you missed them the first time around, here are the most popular Environmental Biophysics.org blog posts in 2016.

Lysimeters Determine if Human Waste Composting can be More Efficient

Waste in the water canals

In Haiti, untreated human waste contaminating urban areas and water sources has led to widespread waterborne illness.  Sustainable Organic Integrated Livelihoods (SOIL) has been working to turn human waste into a resource for nutrient management by turning solid waste into compost.  Read more

Estimating Relative Humidity in Soil: How to Stop Doing it Wrong

Image of a researchers hand holding soil

Estimating the relative humidity in soil?  Most people do it wrong…every time.  Dr. Gaylon S. Campbell shares a lesson on how to correctly estimate soil relative humidity from his new book, Soil Physics with Python, which he recently co-authored with Dr. Marco Bittelli.  Read more.

How Many Soil Moisture Sensors Do You Need?

Road winding through a mountain pass

“How many soil moisture sensors do I need?” is a question that we get from time to time. Fortunately, this is a topic that has received substantial attention by the research community over the past several years. So, we decided to consult the recent literature for insights. Here is what we learned.

Data loggers: To Bury, or Not To Bury

Data Logger in an orange bury-able box sitting on next to installation site

Globally, the number one reason for data loggers to fail is flooding. Yet, scientists continue to try to find ways to bury their data loggers to avoid constantly removing them for cultivation, spraying, and harvest.  Chris Chambers, head of Sales and Support at Decagon Devices always advises against it. Read more

Founders of Environmental Biophysics:  Champ Tanner

Image of Champ Tanner

Image: http://soils.wisc.edu/people/history/champ-tanner/

We interviewed Gaylon Campbell, Ph.D. about his association with one of the founders of environmental biophysics, Champ Tanner.  Read more

And our three most popular blogs of all time:

Do the Standards for Field Capacity and Permanent Wilting Point Need to Be Reexamined?

Image of green wheat and a bright blue sky

We asked scientist, Dr. Gaylon S. Campbell, which scientific idea he thinks impedes progress.  Here’s what he had to say about the standards for field capacity and permanent wilting point.  Read more

Environmental Biophysics Lectures

Close up of a leaf on a tree

During a recent semester at Washington State University, a film crew recorded all of the lectures given in the Environmental Biophysics course. The videos from each Environmental Biophysics lecture are posted here for your viewing and educational pleasure.  Read more

Soil Moisture Sensors In a Tree?

Close up image of tree bark

Soil moisture sensors belong in the soil. Unless, of course, you are feeling creative, curious, or bored. Then maybe the crazy idea strikes you that if soil moisture sensors measure water content in the soil, why couldn’t they be used to measure water content in a tree?  Read more

Download the “Researcher’s complete guide to soil moisture”—>

Get more information on applied environmental research in our

How to Measure Water Potential

In the conclusion of our 3-part water potential  series (see part 1), we discuss how to measure water potential—different methods, their strengths, and their limitations.

Image of a mountain with a little snow on the top

Vapor pressure methods work in the dry range.

How to measure water potential

Essentially, there are only two primary measurement methods for water potential—tensiometers and vapor pressure methods. Tensiometers work in the wet range—special tensiometers that retard the boiling point of water (UMS) have a range from 0 to about -0.2 MPa. Vapor pressure methods work in the dry range—from about -0.1 MPa to -300 MPa (0.1 MPa is 99.93% RH; -300 MPa is 11%).

Historically, these ranges did not overlap, but recent advances in tensiometer and temperature sensing technology have changed that. Now, a skilled user with excellent methods and the best equipment can measure the full water potential range in the lab.   

There are reasons to look at secondary measurement methods, though. Vapor pressure methods are not useful in situ, and the accuracy of the tensiometer must be paid for with constant, careful maintenance (although a self-filling version of the tensiometer is available).

Here, we briefly cover the strengths and limitations of each method.

Vapor Pressure Methods:

The WP4C Dew Point Hygrometer is one of the few commercially available instruments that currently uses this technique. Like traditional thermocouple psychrometers, the dew point hygrometer equilibrates a sample in a sealed chamber.

Image of a researcher using a WP4C Dew Point Hygrometer to test a sample

WP4C Dew Point Hygrometer

A small mirror in the chamber is chilled until dew just starts to form on it. At the dew point, the WP4C measures both mirror and sample temperatures with 0.001◦C accuracy to determine the relative humidity of the vapor above the sample.

Advantages

The most current version of this dew point hygrometer has an accuracy of ±1% from -5 to -300 MPa and is also relatively easy to use. Many sample types can be analyzed in five to ten minutes, although wet samples take longer.

Limitations

At high water potentials, the temperature differences between saturated vapor pressure and the vapor pressure inside the sample chamber become vanishingly small.

Limitations to the resolution of the temperature measurement mean that vapor pressure methods will probably never supplant tensiometers.

The dew point hygrometer has a range of -0.1 to -300 MPa, though readings can be made beyond -0.1 MPa using special techniques. Tensiometers remain the best option for readings in the 0 to-0.1 MPa range.

Secondary Methods

Water content tends to be easier to measure than water potential, and since the two values are related, it’s possible to use a water content measurement to find water potential.

A graph showing how water potential changes as water is adsorbed into and desorbed from a specific soil matrix is called a moisture characteristic or a moisture release curve.

Image of an example of a moisture release curve in the form of a graph

Example of a moisture release curve.

Every matrix that can hold water has a unique moisture characteristic, as unique and distinctive as a fingerprint. In soils, even small differences in composition and texture have a significant effect on the moisture characteristic.

Some researchers develop a moisture characteristic for a specific soil type and use that characteristic to determine water potential from water content readings. Matric potential sensors take a simpler approach by taking advantage of the second law of thermodynamics.

Matric Potential Sensors

Matric potential sensors use a porous material with known moisture characteristic. Because all energy systems tend toward equilibrium, the porous material will come to water potential equilibrium with the soil around it.

Using the moisture characteristic for the porous material, you can then measure the water content of the porous material and determine the water potential of both the porous material and the surrounding soil. Matric potential sensors use a variety of porous materials and several different methods for determining water content.

Accuracy Depends on Custom Calibration

At its best, matric potential sensors have good but not excellent accuracy. At its worst, the method can only tell you whether the soil is getting wetter or drier. A sensor’s accuracy depends on the quality of the moisture characteristic developed for the porous material and the uniformity of the material used. For good accuracy, the specific material used should be calibrated using a primary measurement method. The sensitivity of this method depends on how fast water content changes as water potential changes. Precision is determined by the quality of the moisture content measurement.

Accuracy can also be affected by temperature sensitivity. This method relies on isothermal conditions, which can be difficult to achieve. Differences in temperature between the sensor and the soil can cause significant errors.

Limited Range

All matric potential sensors are limited by hydraulic conductivity: as the soil gets drier, the porous material takes longer to equilibrate. The change in water content also becomes small and difficult to measure. On the wet end, the sensor’s range is limited by the air entry potential of the porous material being used.

Image of a METER Tensiometer in the ground

METER Tensiometer

Tensiometers and Traditional Methods

Read about the strengths and limitations of tensiometers and other traditional methods such as gypsum blocks, pressure plates, and filter paper here.

Choose the right water potential sensor

Dr. Colin Campbell’s webinar “Water Potential 201: Choosing the Right Instrument” covers water potential instrument theory, including the challenges of measuring water potential and how to choose and use various water potential instruments.

Take our Soil Moisture Master Class

Six short videos teach you everything you need to know about soil water content and soil water potential—and why you should measure them together.  Plus, master the basics of soil hydraulic conductivity.

Watch it now—>

Download the “Researcher’s complete guide to water potential”—>

Download the “Researcher’s complete guide to soil moisture”—>

Get more information on applied environmental research in our

Water Potential: The Science Behind the Measurement (Part 2)

In the second part of this month’s water potential  series (see part 1), we discuss the separate components of a water potential measurementThe total water potential is the sum of four components: matric potential, osmotic potential, gravitational potential, and pressure potential.  This article gives a description of each component. Read the article here…

Visualize Matric Potential

 

Next Week: Learn the different methods for measuring water potential and their strengths and limitations.

Take our Soil Moisture Master Class

Six short videos teach you everything you need to know about soil water content and soil water potential—and why you should measure them together.  Plus, master the basics of soil hydraulic conductivity.

Watch it now—>

Download the “Researcher’s complete guide to water potential”—>

Download the “Researcher’s complete guide to soil moisture”—>

Get more information on applied environmental research in our

Secrets of Water Potential: Learn the Science Behind the Measurement

This month in a 3 part series, we will explore water potential —the science behind it and how to measure it effectively.

Pouring water into a glass with ice around the glass

To understand water potential, compare the water in a soil sample to water in a drinking glass.

Water Potential: a Definition

Read the article here…

Next week learn about the four components of water potential—osmotic potential, gravitational potential, matric potential, and pressure potential.

Take our Soil Moisture Master Class

Six short videos teach you everything you need to know about soil water content and soil water potential—and why you should measure them together.  Plus, master the basics of soil hydraulic conductivity.

Watch it now—>

Download the “Researcher’s complete guide to water potential”—>

Download the “Researcher’s complete guide to soil moisture”—>

Get more information on applied environmental research in our

Water Potential Instruments used to Determine Where Alkali Bee Larvae Get their Water

Alkali bee beds are maintained by farmers near Touchet, Washington to pollinate fields of alfalfa, grown there for seed. The beds are typically a few acres in size and provide a nesting place for the bees, which can increase seed production by as much as 70 percent. Alkali bees are better than honeybees for pollinating alfalfa, as they don’t mind the explosive pollen release of the alfalfa flower.

Alkali Bee on a persons finger

Alkali Bee

USDA-ARS entomologist, Dr. Jim Cane, is trying to understand optimal bee-soil-water relations to ensure the bees will happily reproduce next year’s pollinators.  Dr. Gaylon S. Campbell recently worked with Dr. Cane to measure water relations in bee nesting beds.  Here’s what they found out:

Why Water Relations Matter

Alkali bees nest underground.  They prefer salty soil surfaces which retard evaporation and discourage plant growth. The soil has to be the right texture, density, and have the correct moisture levels for successful nesting. In addition, the water potential of the larval food provision mass has to be low so it does not mold.  Growers apply high levels of sodium chloride to the bee bed surface, and the soil is sub-irrigated to keep the salt near the surface and the subsurface soil moist.  

Alkali bee larvae

Bottom right: a white larvae on a gold colored provision mass inside one of the tunnels dug by the female.

The female digs a tunnel down to a favorable depth, typically 15-20 cm or more, hollows out a spheroidal shaped cell around 1 cm diameter, and carefully coats the inside of the cell with a special secretion that appears to form a hydraulic and vapor barrier between the soil and the nest contents.  She then builds a provision mass from pollen and nectar, shaped like an oblate spheroid with major axis around 6 mm and minor axis 3-4 mm.  One egg is laid on the provision mass (which provides food for the larva), and the mother bee then seals up the entrance to the cell and moves on to the next one.  

Alkali Bee nest with larvae

The female coats the inside of the cell with a special secretion that appears to form a hydraulic and vapor barrier between the soil and the nest contents.

Specialized Instruments for Each Measurement

In order to understand moisture relations between the soil, the larva, and the food provision mass, Dr. Cane carefully excavated three soil blocks from one of the bee beds, dissected them to find nests, and Dr. Campbell helped measure water potentials of the eggs, larvae, and provision masses.  They also measured matric and total water potentials of bee bed soils.  

A researcher with a instrument called a sample chamber psychometer sitting in front of him

A sample chamber psychrometer

A  Sample Chamber Psychrometer is the only water potential device with a small enough sample chamber to be able to measure individual eggs and early-stage larvae, which it did.  The provision masses were too dry to measure with the psychrometer, so several provisions were combined (to provide sufficient sample size) and measured in a Dew Point Potentiameter, along with the soil samples.  Dr. Campbell measured matric potential of the highly saline soils using a tensiometer.  

Water Potential Seems Important to the Bees

Dr. Campbell thinks matric potential is important in determining physical condition of the soil (how easy it is for the bees to dig and paint the inside of the nest), but probably has little to do with bee or larva water relations. The water potentials of the eggs and larvae were low (dry), but within the range one sees in living organisms.  There was a consistent pattern of larva water potential decreasing with larval growth.  

Image of an Alkali Bee seeking shelter in a rain storm in a little tunnel in the dirt

This alkali bee seeks shelter during the rain in a previously dug tunnel.

The exciting part of this experiment was the provision mass water potentials, which were so low that it is more convenient to talk about them in terms of water activity (another measure of the energy state of water in a system, widely used by food scientists).  The intact provision masses were drier than any of the soil water potentials and not in equilibrium with the soil.  Dr. Campbell says, “It’s interesting that all the provision masses were at water activities that would make them immune to degradation by almost all microbes, both bacteria and fungi.”

Another Interesting Observation  

Dr. Cane found one provision mass covered with mold.  Soil and plants are full of inoculum, so it is unlikely that the other provision masses lacked spores, but this one was wet enough to be compromised, and the others apparently weren’t.  Dr. Campbell says, “There are two possibilities.  Either it was put up too wet, or it got wet in the nest.  The really interesting question is why all of them don’t get that wet.  I think the hydrophobic coating of the nest eliminates all hydraulic contact from the soil to the provision mass, thus eliminating any liquid water flow, which would almost immediately wet the pollen balls.  I think it also drastically reduces the vapor conductance from the soil to the ball, making water uptake through the vapor phase slow enough that the provision mass can usually be consumed before its water activity gets high enough for mold to grow.”

Image of a large green tool used to punch holes in the soil for Alkali Bees to nest in laying on top of the soil

Tool the grower uses to punch holes in the nesting beds for the bees to tunnel into.

How Do Larvae Stay Hydrated?

The water activity of the larvae were around 0.99, much higher than either the soil or the provision mass, inspiring the scientists to wonder how they stay hydrated.  Dr. Campbell speculates, “They have a water source from their metabolism, since water is a byproduct of respiration (Campbell and Norman, p. 205).  It is also possible for biological systems to take up water against a potential gradient by expending energy.  There are reports of a beetle which can take up water from a drop of saturated NaCl (water activity 0.75), so it is possible that the larva gets water from the environment that way.  There appears to be no shortage of energy available.  On the other hand, it would seem like the larval cuticle would need to be pretty impermeable to maintain water balance since the salty soil, and especially the provision mass, are so much drier than the larva.”  Dr. Cane notes that, ”For a few exemplar bee species, mature larvae weigh 30-40% more than the provision they ate, with the possibility that the provision undergoes a controlled hydration by the soil atmosphere through the uncoated soil cap of the nest cell.”

In the future, Dr. Campbell is hoping to see more experiments that will answer some of the questions raised, such as measuring individual provision masses to determine why there is some variation in water potential.  Dr. Cane will be undertaking experiments to measure moisture weight gain of new provisions exposed to the soil atmosphere of the Touchet nest bed soil.

Download the “Researcher’s complete guide to water potential”—>

Download the “Researcher’s complete guide to soil moisture”—>

Get more information on applied environmental research in our

References

Campbell, G. S. 1985. Soil Physics with BASIC: Transport Models for Soil-Plant Systems.  Elsevier, New York.

Campbell, G. S. and J. M. Norman. 1998. An Introduction to Environmental Biophysics. Springer Verlag, N. Y.

Rawlins, S. L. and G. S. Campbell. 1986. Water potential: thermocouple psychrometry. In Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods – Agronomy Monograph 9, 2nd edition.

Mesh Wireless Sensor Networks: Will Their Potential Ever Be Realized? (Part 2)

Soil ecologist Dr. Kathy Szlavecz and her husband, computer scientist, Dr. Alex Szalay, both at Johns Hopkins University, are testing a wireless sensor network (WSN; Mesh Sensor Network), developed by Dr. Szalay, his colleague, computer scientist Dr. Andreas Terzis, and their graduate students (read part 1). Mesh networks generate thousands of measurements monthly from wireless sensors. The husband/wife team says that WSN’s have the potential to revolutionize soil ecology by generating a previously impossible spatial resolution.  This week, read about the results of their experiments.

Worm in the Mud

Overall, the experiments were a scientific success, exposing variations in the soil microclimate not previously observed.

Results and Challenges:

About the performance of the network, Kathy says, “Overall, our experiments were a scientific success, exposing variations in the soil microclimate not previously observed. However, we encountered a number of challenging technical problems, such as the need for low-level programming to get the data from the sensor into a usable database, calibration across space and time, and cross-reference of measurements with external sources.

The ability of mesh networks that generate so much data also presents a data management challenge. Kathy explains, “We didn’t always have the resources or personnel who could organize the data.  We needed a dedicated research assistant who could clean, handle, and organize the data. And the software wasn’t user-friendly enough.  We constantly needed computer science expertise, and that’s not sustainable.”  

The team also faced setbacks stemming from inconsistencies generated by new computer science students beginning work on the project as previous students graduated. This is why the team is wondering if a commercial manufacturer in the industrial sector would be a better option to help finish the development of the mesh network.

Mesh Wireless Sensor Network on rocks in the Atacama desert

This deployment is located in the Atacama desert in Chile. Atacama is one of the highest, driest places on Earth. These sensors are co-located with the Atacama Cosmological Telescope. The goal of this deployment is to understand how the hardware survives in an extreme environment. In addition to the cold, dry climate, the desert is exposed to high UV radiation. These boxes are collecting soil temperature, soil moisture and soil CO2 data. (Image: lifeunderyourfeet.org)

What’s Next?

Kathy and Alex say that mesh sensor network design has room for improvement.  Through their testing, the research team learned that, contrary to the promise of cheap sensor networks, sensor nodes are still expensive. They estimated the cost per mote including the main unit, sensor board, custom sensors, enclosure, and the time required to implement, debug and maintain the code to be around $1,000.  Kathy says, “The equipment cost will eventually be reduced through economies of scale, but there is clearly a need for standardized connectors for connecting external sensors and in general, a need to minimize the amount of custom hardware work necessary to deploy a sensor network.”  The team also sees a need for the development of network design and deployment tools that will instruct scientists where to place gateways and sensor relay points. These tools could replace the current labor-intensive trial and error process of manual topology adjustment that disturbs the deployment area.

Image of deployment locations in fields of the farming systems

This deployment is located in the fields of the farming system project at BARC. Soil temperature and moisture probes are placed at various locations of a corn-soybean-wheat rotation. The goal is to understand and explain soil heterogeneity and to provide background data for trace gas measurements. (Image: Lifeunderyourfeet.org)

Future Requirements:

According to Kathy, wireless sensor networks promise richer data through inexpensive, low-impact collection—an attractive alternative to larger, more expensive data collection systems. However, to be of scientific value, the system design should be driven by the experiment’s requirements rather than technological limitations. She adds that focusing on the needs of ecologists will be the key to developing a wireless network technology that will be truly useful.  “While the computer science community has focused attention on routing algorithms, self-organization, and in-network processing, environmental monitoring applications require quite a different emphasis: reliable delivery of the majority of the data and metadata to the scientists, high-quality measurements, and reliable operation over long deployment cycles. We believe that focusing on this set of problems will lead to interesting new avenues in wireless sensor network research.” And, how to package all the data collected into a usable interface will also need to be addressed in the future.

You can read about Kathy’s experiments in detail at Lifeunderyourfeet.org.

Download the “Researcher’s complete guide to soil moisture”—>

Get more information on applied environmental research in our

Mesh Wireless Sensor Networks: Will Their Potential Ever Be Realized?

Although the idea of mesh wireless sensor networks is not new, the realization of their many benefits have gone largely unrealized. The low success rate of most wireless systems makes the accomplishments of this Johns Hopkins group unique.

Image of bright orange, yellow, and red colored trees in autumn

Soil moisture and temperature are major drivers of seasonal dynamics, soil respiration, carbon cycling, biogeochemical functions, and even the types of species living in a certain area.

The ability to measure soil moisture and temperature is vital to ecologists who work in heterogeneous environments because these parameters are major drivers of seasonal dynamics, soil respiration, carbon cycling, biogeochemical functions, and even the types of species living in a certain area.  But ecologists’ scientific understanding of environmental conditions is hindered when soil moisture measurements disturb the research site, or when field measurements are not collected at biologically significant spatial or temporal granularities. Soil ecologist Dr. Kathy Szlavecz and her husband and computer scientist, Dr. Alex Szalay, both at Johns Hopkins University, are working to solve this dilemma by testing a wireless sensor network (WSN; Mesh Sensor Network), developed by Dr. Szalay, his colleague, computer scientist Dr. Andreas Terzis, and their graduate students. These generate thousands of measurements monthly from wireless sensors. The husband/wife team says that WSN’s have the potential to revolutionize soil ecology by generating a previously impossible spatial resolution.

Diagram of a mesh network data system for soil moisture

Architecture of an end-to-end mesh network data collection system. (Image: lifeunderyourfeet.org)

What is a Mesh Network?

In a mesh wireless sensor network, specially designed radio units (nodes) use proprietary or open communications protocols to self-organize and can pass measurement information back to central units called gateways. Different from star networks where each node communicates directly to the gateway, mesh networks pass data to each other, acting as repeater for other nodes when necessary.

Image of 37 sampling locations at the Smithsonian Environmental Research Center

These are the 37 sampling locations at the Smithsonian Environmental Research Center (SERC) in Edgewater, MD. Data from this deployment is aimed at understanding the effect of forest age, leaf litter input, and earthworm abundance on soil carbon cycling. (Image: lifeunderyourfeet.org)

With low power and reliability as their goal, they are deployed in dense networks to automatically measure conditions such as temperature and soil moisture. These node measurements are taken every few hours over several months. The data are then uploaded onto computers, where it can be maintained and searched. Kathy explains “Without an autonomous sensor system, experiments in need of accurate information about a multitude of environmental parameters on various spatial and temporal scales require a superhuman effort. The inexpensive nature of these sensors enable scientists to place a high-resolution grid of sensors in the field, and get frequent readouts.  This provides an extremely rich data set about the correlations and subtle differences among many parameters, allowing ecologists to design experiments that study not only the gross effects of environmental variables, but also the subtle relations between gradients and small temporal changes.”

Sunlight shining through trees in a forest

Without an autonomous sensor system, experiments in need of accurate information about a multitude of environmental parameters on various spatial and temporal scales require a superhuman effort.

Landscape Studies Benefit from Mesh Networks

Kathy and Alex have deployed mesh wireless sensor networks at several study areas around the state of Maryland.  Kathy says, “Once we record the measurements, we can combine that information with observations of soil organisms to better understand how soil organisms and the soil environment interact. This means we can make better predictions about how human activities will affect the soil environment.” In one urban landscape study, Kathy and her team deployed over 100 nodes around a CO2 flux tower looking at the two major landscape covers in an urban environment: grass and forest.  She explains, “We collected data from nodes connected to soil moisture and temperature sensors for over two years at these sites, and the system worked quite well. We collected about 180 million data points, and that’s no small feat.”

Next week: Learn the results of this research group’s mesh network testing and what Kathy thinks the future holds for this technology.

Download the “Researcher’s complete guide to soil moisture”—>

Download the “Researcher’s complete guide to water potential”—>

Get more information on applied environmental research in our

Unraveling the Effects of Dams in Costa Rica (Part 2)

Dr. Rafael Muñoz-Carpena, Professor and University of Florida Water Institute Faculty Fellow and his research team are performing environmental studies on the Palo Verde National Park wetlands, trying to unravel the effects of the dams and how to revert some of the damage (see part one).  This week, find out how the researchers established connectivity in such a remote area,  some of the problems associated with the research, and how the team has addressed some unusual research issues.

ATMOS 41 Weather Station in Palo Verde National Park Wetlands

Surface water elevation gauge station at the Bebedero river. Photo credit: Marco Pazmino Antonio

The Data Challenges of Remote Locations

The team began collecting data, as part of a joint effort with the Organization of Tropical Studies (OTS) research station. However, typical sensors require constant supervision and frequent visits, which imposed a burden on the station staff. There was also the risk of losing data if a sensor malfunction went undetected between monthly visits.  Rafael says, “Sometimes access was not possible due to floods or scheduling issues, so there was a high risk of losing information. To fix the problem (thanks to a National Science Foundation grant awarded to OTS) we integrated the sensors into a system that gives us remote access on a daily basis. This allows us to see the status of the instrumentation in near real-time, and thus coordinate with OTS to replace sensors if needed.”

Fauna in Palo Verde

Glimpse of the fauna in Palo Verde. Photo credit: Alice Alonso

Connectivity Issues

The team had a difficult time finding internet connectivity because the area is so remote. After trying several solutions, they finally built their own cell towers. The stations are now outfitted with cellular-enabled data loggers in conjunction with rain gauges and soil moisture and salinity sensors. The stations also include a standing well to measure surface and river water levels and monitor flooding stages. These are coupled with shallow water table wells, installed below the surface at 3-5 meters.  Rafael says, “These are tidal rivers, so we get a lot of activity up and down. We look at river data in conjunction with inland responses to try and get an idea of the influence of the river on the shallow groundwater nearby. All these data feed into a database that researchers and stakeholders can look at.”

Composite image contrasting the Palo Verde wetland in the 1986 and the wetland in recent days (2012) during the wet seasons. It highlights the encroachment of vegetation and Typha domingensis (cattail), closing the patches of open water and reducing biodiversity and sites for birds feeding and nesting.

Composite image contrasting the Palo Verde wetland in the 1986 and the wetland in recent days (2012) during the wet seasons. It highlights the encroachment of vegetation and Typha domingensis (cattail), closing the patches of open water and reducing biodiversity and sites for birds feeding and nesting.

Internal Drivers

Dr. Muñoz-Carpena says because of the lag in the environmental response, it is not immediately clear to the general public that the wetland behavior is the result of what is happening upstream. People fail to see a connection. Therefore unraveling the data in a way that is clear is the first challenge of the project. He adds, “There are also internal drivers such as park management changes that compound the effects of the dams. Originally park managers tried invasive plant control with fire and cattle. Now they control the invasive with blade-rigged tractors that mow the cattail. But this is a highly expensive and temporary measure with recurrent costs, which provides no definitive solution to the cattail invasion. It’s important to understand the changes are not just the result of what’s happening locally. We need to find permanent solutions by tracking down the root of the problem.”

Endangered Jabiru birds in the trees in Palo Verde National Park

Endangered Jabiru in the Palo Verde National Park. Photo credit: Alice Alonso

Plants are Not the Only Invasives

Cattails are not the only invaders that plague the wetlands. Rafael explains, “The other problem is that there is trafficking going on in the park. The men see these data logger boxes with silver antennas, and they think it’s a camera, so they break off the antennas. We are now putting up signs that say, ‘This is not the government watching you. This is research to protect your environment,’ but we are afraid the next time they will break the boxes and everything that goes with them. We won’t have the manpower or the financial resources to go down there and fix the data loggers for another six months.”

Image of a typical monitoring station set up in a more dry area

Example of a typical monitoring station: Surface and subsurface water elevation and EC monitoring wells, and soil moisture and EC at 30 and 60 cm depths. Sensors connected to a wireless cellular data logger for near-real-time data access. Photo taken during the dry season. Photo credit: Alice Alonso

What’s Next?

Over the last three years the team has collected a high-resolution database of fifteen to thirty minute timed steps, with over 100 sensors deployed in twelve spatially-distributed monitoring stations around the park. With that data, Rafael’s team is conducting exploratory types of analysis to study not only potential drivers of change, but also the cause of the drivers. They want to understand potential initiatives they could introduce to make the system more sustainable. Rafael says, “Once we develop integrated hydrological models and test them for the conditions in Costa Rica, hopefully we can understand the behavior in the past and forecast some different scenarios for the future.” Because many regions in the world suffer the impacts of interbasin water transfer, this research can inform future research policy at a broader scale.

Monkeys hang from a tree branch in Palo Verde National park

Glimpse of the fauna in Palo Verde. Photo credit: Alice Alonso

See a map of the instrumentation network within the Palo Verde National Park.

Conceptual representation of the Palo Verde National Park in the context of the Tempisque watershed system.

Conceptual representation of the Palo Verde National Park in the context of the Tempisque watershed system.

Download the “Researcher’s complete guide to water potential”—>

Download the “Researcher’s complete guide to soil moisture”—>

Get more information on applied environmental research in our

Unraveling the Effects of Dams in Costa Rica

Thirty years ago, in Costa Rica’s Palo Verde National Park, the wetlands flooded regularly and eco-tourists could view thousands of waterfowl. Today, invasive cattail plants cover portions of the wetland which has subsequently dried up and become colonized by hardwoods. Consequently, the number of birds has fallen dramatically.

Flocks of birds flying against a sunset

The number of birds on Palo Verde National Park has fallen dramatically. (Image: anywherecostarica.com)

Some people blame the dams built in the 1970s which introduced hydrological power and created a large irrigation district in the remote region. Dr. Rafael Muñoz-Carpena, Professor and University of Florida Water Institute Faculty Fellow and his research team are performing environmental studies on the wetlands, trying to unravel the effects of the dams and how to revert some of the damage. Rafael explains, “We have a situation where modern engineering brought about social improvements, helpful renewable resources, and irrigation for abundant food production. But the resulting environmental degradation threatens a natural region in a country that depends on eco-tourism.”

Birds in a river at Palo Verde National Park

“A vast network of mangrove-rich swamp, lagoons, marshes, grassland, limestone outcrops, and forests comprise the 32,266 acre Palo Verde National Park.” (Image and text: anywherecostarica.com)

Are The Dams Responsible?

Dr. Muñoz-Carpena says because of lack of historical data it’s difficult to untangle and separate all the factors that have caused the environmental degradation. He adds, “Thirty years ago Palo Verde National Park was part of a large wetland system which was important to all of Central America because it contained many endangered species and was a wintering ground for migratory birds from North America. The Palo Verde field station on the edge of the wetland, operated by the Organization of Tropical Studies (OTS), attracted birdwatchers and wetland scientists from all over the world.”

In the 1970’s, with international funding, a dam was built in the mountains to collect water from the humid side of Costa Rica in order to generate hydroelectric power. It was clean, abundant, and strategically important.  With the water transferred to the dry side of the country, a large irrigation district was created to not only produce important crops to the region like rice and beans, but to distribute the land among small parcel settlers.

Flock of birds in the grasslands at Palo Verde National Park

“Birding is the principal draw of visitors to the park.” (Image and text: anywherecostarica.com)

Over the years, however, the wetland area slowly degraded to the point where its Ramsar Convention wetland classification is under question. Rafael says that understanding the causes of the degradation, the impacts of the human system, and how the natural and human systems are linked, is the big question of his research, and there are many factors to consider. “The release of the water, ground and surface water (over)use, agriculture, human development, and a larger population are all factors that could contribute to this degradation. Everything compounds in the downstream coastal wetlands. In collaboration with OTS and other partner organizations and universities, we are trying to disentangle these different drivers.”

Grasslands and swamps with mountains in the background

Understanding the causes of the degradation, the impacts of the human system, and how the natural and human systems are linked, is the big question of this research. (Image: anywherecostarica.com)

A Lack of Historical Data

One of the challenges the researchers face is to gather a sufficient amount of temporal and spatial information about what happened in the past forty years.  There are no public repositories of data to tap, and the information is spotty and hard to access. Rafael says, “Thanks to the collaboration of many local partners, we have been able to gather enough information to stitch together a large database out of a collection of non-systematic studies. The biggest challenge is to harmonize data that has been collected by different people in non-consistent ways.” This large database now contains the best long-term record possible for key hydrologic variables: river flow, groundwater stage, precipitation, and evapotranspiration.

The team is also using remote sensing sources to try to obtain time-series data for land-use and vegetation change, and will have those data ground-truthed through instruments that are collecting similar time-series data. Rafael says, “The idea is to build a network that will allow us to overlap some of the previous data sources with our own, validate and upscale the ground data with remote sensing sources, enabling us to put together a detailed picture of what happened.”

Next Week:  Find out how the researchers established connectivity in such a remote area,  some of the problems associated with the research, and how the team has addressed those issues.

Download the “Researcher’s complete guide to soil moisture”—>

Get more information on applied environmental research in our