Skip to content

Posts tagged ‘grant writing’

Philippines Part 2: Overcoming Native Challenges with Remote Data

In one of the first agroforestry efforts in mountainous terrain, Moscow, Idaho community leader Loreca Stauber, Dr. Anthony S. Davis, Tom Alberg and Judi Beck Chair in Natural Resources at the University of Idaho, and their partners have initiated a program where U of I students travel overseas to work with farmers of Banguet province in the Philippines to develop the skills needed to grow high quality tree seedlings.  Local vegetable farmers have historically terraced the mountains that have been forested so they could grow monoculture crops, causing serious erosion (read about it here).  The land has degraded so much that the Philippine government has stepped in: warning farmers to begin conservation techniques, or they will take away the land and manage it themselves.

People building a local nursery in Benguet

Building a local nursery in Benguet.

Inspiring Students to Look at the Big Picture

One of the steps in helping local farmers to solve this problem is to create a local nursery where they can start growing native plants and trees.  Fortunately, the University of Idaho has operated a tree nursery for over one hundred years, and they understand how to grow trees. Dr. Davis specializes in setting up native nurseries for growing native plants all over the world. He says, “I want our students to be exposed to this because we’re graduating students who should be problem solvers, who should be able to look at the biggest challenges and contribute their own ideas towards resolving those challenges.”

Loreca Stauber adds, “We are part of the world and the world is part of us. The students can do more than just get their degree and find a job. Anthony and Kea, when they do this, inspire students to look at a bigger world than they are currently living in.”

Training Students to Understand Native Terrain and Resources

Davis says a good plan needs to take local conditions into account:  “The principles of growing trees are actually universal. It doesn’t matter whether you’re in Haiti, Lebanon, Idaho, or in the Philippines. Those principles are the same and they’re readily transferable. It’s how you adapt them to unique local situations that makes a difference.”

Close up on bamboo stalks

“It’s not really about the best way to grow a plant in a greenhouse environment; It’s about the best way to grow a plant that will also survive on its outplanting site.”

Kea Woodruff, former U of I Nursery Production and Logistics Associate, now at Harvard University, says they train the students who go overseas on the “target plant” concept:  designing a growing regime based on what the plant is going to need in its future home. She says, “It’s not really about the best way to grow a plant in a greenhouse environment; It’s about the best way to grow a plant that will also survive on its outplanting site. Determining what the outplanting site is and what each species will need to survive on that outplanting site is what determines greenhouse operations.”

Dr. Davis says you need to consider native resources when doing these types of projects.  “There could be plumbing there, but there’s no guarantee that when you turn the system on, the tap water will come out. That depends on the seasonality of the rains. It’s part of why we wanted the project partners (the farmers) to have data loggers: so we could look at the data together and get a better feel for when water is most abundant and when it’s most scarce, so it can be stored for later use.”

Overcoming Native Challenges with Remote Data

Decagon (now METER) donated data loggers to the program so that Dr. Davis and other people on the team could look at data with the farmers in the Philippines and advise them when to irrigate.  Davis says, “One of the things that’s most important in trying to set up a very remote nursery and manage the production in that nursery from approximately four flights, twelve hours, and twelve time zones away, is knowing what’s going on. There are things that are really easy to ask, like could you send me a picture every Wednesday and Saturday of the nursery, or could you measure the height and the diameter of the seedlings? What’s much harder to tell is how much water is coming in, or what the temperature was during the day or night, because those require people to be monitoring things at a greater frequency than is often possible. If we know how much water is coming into the nursery from rainfall, we can build collection systems so that we can manage where that water goes later on.”

Managing data for both the short and long term is critical, says Davis, because it’s often whether there was rainfall in the predicted amount, and at the right time, that determines whether a seedling establishes or not.

Next week:  The conclusion of our three part series: an interview with Dr. Davis and Kea Woodruff, discussing the cultural challenges of reforestation in different countries.

Acknowledgements:  The SEAGAA agroforestry project in Benguet is agro and forest; the farmers received a grant from the Rufford Foundation based in the UK to build a greenhouse and much of the water catchment system and auxiliary structure that go with a nursery facility.  They also received a sizable grant from the Philippine government to launch mushroom growing as a necessary complement to help support long-term agroforestry. The project is beyond reforestation – it is the growing of trees, shrubs, ground cover, the restoring of watersheds, creating livelihoods, the rebuilding of soil fertility and integrity, the revival of springs which have vanished with the removal of perennial flora, and the restoring biodiversity to bring back the natural checks and balances of a natural ecosystem.

Download the “Researcher’s complete guide to soil moisture”—>

Get more information on applied environmental research in our

4 Funding Tips from an Experienced Grant Writer

Dr. Richard Gill developed an interest in ecology as a child while exploring the forests and seashores of Washington State. This attraction to wild places motivated Dr. Gill to study Conservation Biology as an undergraduate at Brigham Young University and to receive a PhD in Ecology from Colorado State University.

Dr. Richard Gill

Dr. Richard Gill, ecologist at BYU

His PhD research on plant-soil interactions in dryland ecosystems, supervised by Indy Burke, dovetailed well with his postdoctoral research on plant physiological ecology with Rob Jackson at Duke University. Dr. Gill returned home to Washington in his first faculty position at Washington State University. There he pursued research on global change ecology, studying the impacts of changes in atmospheric CO2, temperature, and drought. In 2008 he joined the faculty of Brigham Young University as an associate professor of biology. He teaches Conservation Biology courses and in the general and honors education curriculum.

Dr. Gill has been successful in obtaining funding from the National Science Foundation, the U.S. Department of Agriculture, U.S. Dept of Energy, and the U.S. Department of the Interior.  He also helped guide one of his graduate students in winning research instrumentation from the Grant Harris Fellowship, provided by METER.  We interviewed him about his thoughts on successful grant writing.  Here’s what he had to say:

  1. Understand the call: I think it’s important to understand what’s being asked of you and write to the call for proposals itself.  We all have ideas, and we think everybody should give us money for every idea that we have.  That’s part of being a scientist, but understanding the parameters and the purpose of the grant is crucial.  This is because the easiest way to eliminate proposals is to cull those that don’t address the call.  In this way, proposal readers go from a stack of 200 to a stack of 50, without having to get into the details of the research at all.  So my advice is to read the call for proposals, and make sure you actually address what they ask for and stick to the requirements for length and format.
  2. Be true to the vision: There is always some sort of vision tied to the call, so make sure you are true to that vision.  For example, let’s say it’s the Grant Harris Fellowship, which provides instrumentation for early career students to do something they wouldn’t otherwise be able to do.  Make sure you say, “Here’s what I’m already doing with the funding and instrumentation that we have in our lab.  There’s a key component missing, and I can only do it if you support me.”  Show a clear need, aligning your research with the purpose of the proposal, and you’ll have a strong case for funding.
  3. Make sure you edit: Many proposals don’t get funded because of poor writing.  Your great ideas can’t come forward if the reader is mired down in your verbiage.  Don’t send them your first draft.  Make sure you have somebody read it for clarity.
  4. Be clear and concise: When scientists are involved in a project, it is common to develop a sort of tunnel vision, a byproduct of having worked on the project for years and being familiar with all the details.  When you write a proposal you should remember that the person who is reading is going to be intelligent, but have no idea what you’ve been doing.  You should say, “Here’s what I’m going to study, why I’m going to study it, and how I’m going to test it.”  Be clear, specific, and declarative.

Download the “Researcher’s complete guide to soil moisture”—>

Get more information on applied environmental research in our

The Spirit of the Grant Harris Fellowship

The Grant Harris Fellowship was conceived in 2009 by  METER‘s (formerly Decagon Devices) marketing group as an opportunity for METER to give back to the science community.  The idea was to create a partnership between METER and researchers so that we could provide instrumentation and be a kind of “scientific friend” to graduate students: giving them experience crafting a proposal, reviewing their ideas, offering feedback, and encouraging those projects that seemed the most promising and exciting to us as scientists.

Grant Harris fellowship

Grant Harris standing in the doorway of METER’s first office in 1987.

When we thought about this opportunity we wondered…who would we name this fellowship after? It was an easy decision when we realized that the principles upon which METER is based come from academia through our founder, retired soil science professor Gaylon Campbell and his father-in-law, Grant Harris, who was a professor and department head of Rangeland Ecology at Washington State University.

Grant Harris fellowship

He lived in a tiny outpost of a house, taking care of sheep-grazing rangeland in a high alpine meadow area, far removed from civilization.

Grant Harris started his career at the beginning of the depression, so when he got married he quickly needed to find a way to support his growing family.  At that time in history, there was not as much college funding or support.  Instead of having the opportunity to attend graduate school, Dr. Harris was forced to start work immediately after obtaining his B.S. for the U.S. Forest Service, managing rangeland in Montana. He lived in a tiny outpost of a house, taking care of sheep-grazing rangeland in a high alpine meadow area, far removed from civilization.

“Scientific Instrumentation has made a lot of progress since I was first exposed to research, working at the Desert Range Experiment Station in 1935 as an undergraduate at Utah State University.  Back then research was 3 parts wits, 6 parts labor, and 1 part instrumentation. I still remember in 1939 measuring the absorption of water into the soil profile using old whisky bottles and corks.

It is amazing to see the time and labor saving devices now available.  We are proud of Decagon’s heritage in producing instrumentation for soil physics.” – Grant Harris

It was only later, after five years of service in the U.S. Navy during WWII, that he finally got the chance to further his education. He returned to school to earn an M.S. and a PhD, and because of his difficult path in obtaining those degrees, he placed a high value on education and an even greater value on the providing of opportunities for research.

Grant Harris fellowship

He placed a high value on education and an even greater value on the providing of opportunities for research.

During his career, Dr. Harris was able to reach out and touch the lives of many students, not only in the U.S. but from all over the world.  He spent time in other countries researching and helping to provide basic science to people throughout his career as a rangeland ecologist.  The Grant Harris Fellowship provides that same learning opportunity for graduate students today where, in the spirit of this legacy that Grant Harris provided, we continue his passion for encouraging research in a direction that will help us understand more about the natural environment.

Colin Campbell, Decagon’s VP of Research and Development commented on the “Spirit of Grant Harris,” during a recent interview.  “As we thought about this opportunity to give back to the research community, we thought of my grandpa, who had a great passion for providing people the chance to learn and grow through the beauty of science.  Thus the objective of the Harris Fellowship is to provide student researchers additional opportunities to dream up new ways of doing things that are going to be successful and also to provide support to those researchers so they can accomplish their goals.”

Click here to learn more about how to apply for the annual Grant Harris Fellowship

Get more information on applied environmental research in our

Download the “Researcher’s complete guide to soil moisture”—>

Do Funding Agencies Favor Collaboration?

It’s an interesting question, and certainly one scientists need to think about. In a recent conversation a science colleague said, “I think in science right now, all the funding agencies are recognizing that to answer the problems that matter, you need to bring in people from different disciplines and even industry. If you look at the major funding focus of the National Science Foundation, when they consider bio-complexity, they’re not looking for a group of people with the same perspective. Science questions are becoming more complex, so you need to get input from people with varied backgrounds.”


R.J. Cook Agronomy Farm at WSU (

Examples of this are two projects that METER has collaborated on recently: the Specialty Crops Research Initiative – Managing Irrigation and Nutrients via Distributed Sensing (SCRI- MINDS) and the WSU Cook Farm project, both of which were able to get funding based in part on the use of METER’s technology, and both had a high-level of multidisciplinary involvement.

We got involved in the Cook Farm Project seven years ago because another scientist and I had an idea that fit in the context of a hot topic of the time which was to create a wireless sensor network that was densely populated in a relatively small area.  We did this because at that time, scientists were recognizing that many of the processes they were interested in were occurring when they were not out in the field measuring. In order to understand these processes, we needed in situ measurements collected continuously over a long period of time.

What we were trying to do is show that you could create a wireless sensor network in a star pattern, where you have a central point collecting data from a host of nodes surrounding it.  Our questions were:  can we create a sustainable star network in the field to get consistent and continuous measurements over several seasons, while densely populating the study area with sensors? The measurement network that we designed allowed us to investigate how topography, slope, and aspect interact to determine the hydrology of the soil in this intensely managed agronomic field.

Decagon collaborated with scientists at Washington State University, working with twelve sites across a 37-hectare field.  We installed five ECH2O-TE (now 5TE) sensors at 30, 60, 90, 120, and 150 cm below the soil surface.


Wheat field

What we learned was that when wheat plants grow, their roots follow the water down a lot deeper than you might imagine.  We observed considerable water loss even 150 cm below the soil surface. Data on soil water potential suggested that, as water was depleted to the point where it was not easily extractable, plant roots at a given level would move deeper into the soil where water was more easily accessible. Soil morphology also came into play as hardpans occurred at several measurement locations and water uptake from layers above and below them showed amazing differences.

It was a really exciting thing scientifically, but also technologically.  We learned that the star network was easily possible.  It ran autonomously and was very successful, in spite of the fact that the cell phone we used to get the data back to the office never worked very well.

So it was the science question and the technology question together that was able to secure the funding.  With those twelve sites WSU was able to secure a grant from the USDA for 4.2 million dollars and the research is still ongoing today.  In fact, recently Cook Farm was established as one of the National long-term agroecosystem research sites (LTAR) which will help continue this kind of research well into the future.

Download the “Researcher’s complete guide to water potential”—>

Download the “Researcher’s complete guide to soil moisture”—>

Get more information on applied environmental research in our