Hydrology 301: What a Hydraulic Conductivity Curve Tells You & More
Hydraulic conductivity is the ability of a porous medium (soil for instance) to transmit water in saturated or nearly saturated conditions. It’s dependent on several factors: size distribution, roughness, tortuosity, shape, and degree of interconnection of water-conducting pores. A hydraulic conductivity curve tells you, at a given water potential, the ability of the soil to conduct water.
For example, as the soil dries, what is the ability of water to go from the top of a sample [or soil layer in the field] to the bottom. These curves are used in modeling to illustrate or predict what will happen to water moving in a soil system during fluctuating moisture conditions. Researchers can combine hydraulic conductivity data from two laboratory instruments, the KSAT and the HYPROP, to produce a full hydraulic conductivity curve (Figure 1).
In Hydrology 301, Leo Rivera, Research Scientist at METER, discusses hydraulic conductivity and the advantages and disadvantages of methods used to measure it.
Watch the webinar below.
Get more info on applied environmental research in our
Download the “Researcher’s complete guide to water potential”—>
Download the “Researcher’s complete guide to soil moisture”—>