Researchers need to optimize funding and maximize peer-reviewed paper output. ZENTRA Cloud’s powerful data management software works with the new ZL6 data logger to make it easier to succeed at both.
ZENTRA Cloud reduces workload by speeding up analysis, streamlining workflow, and simplifying data sharing.
Try ZENTRA Cloud now
Want to explore how ZENTRA Cloud works? Request access to a live test account.
Take a ZENTRA Cloud guided tour
Get a comprehensive look at ZENTRA Cloud’s capabilities and learn how to get started here.
Dr. Yossi Osroosh, Precision Ag Engineer in the Department of Biological Systems Engineering at Washington State University, continues (see part 1) to discuss the strengths and limitations of IoT technologies for irrigation water management.
Informed irrigation decisions require real-time data from networks of soil and weather sensors at desired resolution and at a reasonable cost.
LoRaWAN (a vendor-managed solution see part 1) is ideal for monitoring applications where sensors need to send data only a couple of times per day with very high battery life at a very low cost. Cellular IoT, on the other hand, works best for agricultural applications where sensors are required to send data more frequently and irrigation valves need to be turned on/off. Low-Power Wide-Area Networking (LPWAN) technologies need gateways or base stations for functioning. The gateway uploads data to a cloud server through traditional cellular networks like 4G. Symphony Link has an architecture very similar to LoRaWAN with higher degree of reliability appropriate for industrial applications. The power budget of LTE Cat-M1 9 (a network operator LPWAN) is 30% higher per bit than technologies like SigFox or LoRaWAN, which means more expensive batteries are required. Some IoT technologies like LoRa and SigFox only support uplink suited for monitoring while cellular IoT allows for both monitoring and control. LTE-M is a better option for agricultural weather and soil moisture sensor applications where more data usage is expected.
NB-IoT is more popular in EU and China and LTE Cat-M1 in the U.S. and Japan. T-Mobile is planning to deploy NB-IoT network in the U.S. by mid-2018 following a pilot project in Las Vegas. Verizon and AT&T launched LTE Cat-M1 networks last year and their IoT-specific data plans are available for purchase. Verizon and AT&T IoT networks cover a much greater area than LoRa or Sigfox. An IoT device can be connected to AT&T’s network for close to $1.00 per month, and to Verizon’s for as low as $2 per month for 1MB of data. A typical sensor message generally falls into 10-200 bytes range. With the overhead associated with protocols to send the data to the cloud, this may reach to 1KB. This can be used as a general guide to determine how much data to buy from a network operator.
Studies show there is a potential for over 50% water savings using sensor-based irrigation scheduling methods.
What the future holds
Many startup companies are currently focused on the software aspect of IoT, and their products lack sensor technology. The main problem they have is that developing good sensors is hard. Most of these companies will fail before the batteries of their sensors die. Few will survive or prevail in the very competitive IoT market. Larger companies that own sensor technologies are more concerned with the compatibility and interoperability of these IoT technologies and will be hesitant to adopt them until they have a clear picture. It is going to take time to see both IoT and accurate soil/plant sensors in one package in the market.
With the rapid growth of IoT in other areas, there will be an opportunity to evaluate different IoT technologies before adopting them in agriculture. As a company, you may be forced to choose specific IoT technology. Growers and consultants should not worry about what solution is employed to transfer data from their field to the cloud and to their computers or smartphones, as long as quality data is collected and costs and services are reasonable. Currently, some companies are using traditional cellular networks. It is highly likely that they will finally switch to cellular IoT like LTE Cat-M1. This, however, may potentially increase the costs in some designs due to the higher cost of cellular IoT data plans.
Dr. Yossi Osroosh, Precision Ag Engineer in the Department of Biological Systems Engineering at Washington State University, discusses where and why IoT fits into irrigation water management. In addition, he explores possible price, range, power, and infrastructure road blocks.
Wireless sensor networks collect detailed data on plants in areas of the field that behave differently.
Studies show there is a potential for water savings of over 50% with sensor-based irrigation scheduling methods. Informed irrigation decisions require real-time data from networks of soil and weather sensors at desired resolution and a reasonable cost. Wireless sensor networks can collect data on plants in a lot of detail in areas of the field that behave differently. The need for wireless sensors and actuators has led to the development of IoT (Internet of Things) solutions referred to as Low-Power Wide-Area Networking or LPWAN. IoT simply means wireless communication and connecting to some data management system for further analysis. LPWAN technologies are intended to connect low-cost, low-power sensors to cloud-based services. Today, there are a wide range of wireless and IoT connectivity solutions available raising the question of which LPWAN technology best suits the application?
IoT Irrigation Management Scenarios
The following are scenarios for implementing IoT:
buying a sensor that is going to connect to a wireless network that you own (i.e., customer supplied like Wi-Fi, Bluetooth),
buying the infrastructure or at least pieces of it to install onsite (i.e., vendor managed LPWAN such as LoRaWAN, Symphony Link), and
relying on the infrastructure from a network operator LPWAN (e.g., LTE Cat-M1, NB-IOT, Sigfox, Ingenu, LoRWAN).
This is how cellular network operators or cellular IoT works. LPWAN technology fits well into agricultural settings where sensors need to send small data over a wide area while relying on batteries for many years. This distinguishes LPWAN from Bluetooth, ZigBee, or traditional cellular networks with limited range and higher power requirements. However, like any emerging technology, certain limitations still exist with LPWAN.
Individual weather and soil moisture sensor subscription fees in cellular IoT may add up and make it very expensive where many sensors are needed.
IoT Strengths and Limitations
The average data rate in cellular IoT can be 20 times faster than LoRa or Symphony Link, making it ideal for applications that require higher data rates. LTE Cat-M1 (aka LTE-M), for example, is like a Ferrari in terms of speed compared to other IoT technologies. At the same time, sensor data usage is the most important driver of the cost in using cellular IoT. Individual sensor subscription fee in cellular IoT may add up and make it very expensive where many sensors are needed. This means using existing wireless technologies like traditional cellular or ZigBee to complement LPWAN. One-to-many architecture is a common approach with respect to wireless communication and can help save the most money. Existing wireless technologies like Bluetooth LE, WiFi or ZigBee can be exploited to collect in-field data. In this case, data could be transmitted in-and-out of the field through existing communication infrastructure like a traditional cellular network (e.g., 3G, 4G) or LAN. Alternatively, private or public LPWAN solutions such as LoRaWAN gateways or cellular IoT can be used to push data to the cloud. Combination of Bluetooth, radio or WiFi with cellular IoT means you will have fewer bills to pay. It is anticipated that, with more integrations, the IoT market will mature, and costs will drop further.
Many of LPWAN technologies currently have a very limited network coverage in the U.S. LTE Cat-M1 by far has the largest coverage. Ingenu, which is a legacy technology, Sigfox and NB-IOT have very limited U.S. coverage. Some private companies are currently using subscription-free, crowd-funded LoRaWAN networks to provide service to U.S. growers: however, with a very limited network footprint. Currently, cellular IoT does not perform well in rural areas without strong cellular data coverage.
In two weeks: Dr. Osroosh continues to discuss IoT strengths and limitations in part 2.