Can Canopy Measurements Determine Soil Moisture? (Part 2)
Dr. Y. Osroosh, now a researcher at Washington State University, believes that plants are the best soil moisture sensors (see part 1). He and his team have developed a new model for interpreting plant canopy signals to indirectly determine soil moisture in a Fuji apple orchard. Below are the results of their efforts and what he sees as the future of this research.
The Results
Osroosh says they expected to see correlations, but such strong relationships were unexpected. The team found that soil water deficit was highly correlated with thermal-based water stress indices in drip-irrigated apple orchard in the mildly-stressed range. The relationships were time-sensitive, meaning that they were valid only at a specific time of day. The measurements taken between 10:00am and 11:00am (late morning, time of maximum transpiration) were highly correlated with soil water deficit, but the “coefficient of determination” decreased quickly and significantly beyond this time window (about half in just one hour, and reached zero in the afternoon hours). Osroosh says this is a very important finding because researchers still think midday is the best time to measure canopy water stress index (CWSI). He adds, “The apple trees showed an interesting behavior which was nothing like what we are used to seeing in row crops. They regulate their stomata in a way that transpiration rate is intense late in the morning (maximum) and late in the afternoon. During the hot hours of afternoon, they close their stomata to minimize water loss.”
Other Research
Osroosh points to other efforts which have tried to correlate remotely-sensed satellite-based thermal or NIR measurements to soil water content. He says, “The closest studies to ours have been able to find good relationships between CWSI and soil water content in the root zone near the end of the season at high soil water deficits in row crops. Paul Colaizzi, a research agricultural engineer did his PhD research in part on the relationship between canopy temperature, CWSI, and soil water status in Maricopa, Arizona; also motivated by Jackson et al. (1981). Steve Evett and his team at Bushland, Texas are continuing that research as they try to develop a relationship between CWSI and soil water status that will hold up. They are using a CWSI that is integrated over the daylight hours and have found good relationships between CWSI and soil water content in the root zone near the end of the season when plots irrigated at deficits begin to develop big deficits.”
What’s The Future?
In the future, Osroosh hopes to study the limitations of this approach and to find a better way to monitor a large volume of soil in the root zone in real-time (as reference). He says, “We would like to see how universal these equations can be. Right now, I suspect they are crop and soil-specific, but by how much we don’t know. We want to study other apple cultivars, tree species, and perhaps even row crops, under other irrigation systems and climates. We need to monitor crops for health, as well, to make sure what we are measuring is purely a water stress signal. One of our major goals is to develop a sensor-based setup which, after calibration, can be used for “precise non-contact sensing of soil water content” and “stem water potential” in real-time by measuring canopy temperature and micrometeorological parameters.”
Download the “Researcher’s complete guide to soil moisture”—>
Download the “Researcher’s complete guide to water potential”—>
Download the “Researcher’s complete guide to leaf area index (LAI)”—>
Get more information on applied environmental research in our