Skip to content

Posts tagged ‘soil moisture release curve’

Lab versus in situ soil water characteristic curves—a comparison

The HYPROP and WP4C enable fast, accurate soil moisture release curves (soil water characteristic curves-SWCCs), but lab measurements have some limitations: sample throughput limits the number of curves that can be produced, and curves generated in a laboratory do not represent their in situ behavior. Lab-produced soil water retention curves can be paired with information from in situ moisture release curves for deeper insight into real-world variability.

Tractor moving soil around

Soil water characteristic curves help determine soil type, soil hydraulic properties, and mechanical performance and stability

Moisture release curves in the field? Yes, it’s possible.

Colocating water potential sensors and soil moisture sensors in situ add many more moisture release curves to a researcher’s knowledge base. And, since it is primarily the in-place performance of unsaturated soils that is the chief concern to geotechnical engineers and irrigation scientists, adding in situ measurements to lab-produced curves would be ideal.

In this brief 20-minute webinar, Dr. Colin Campbell, METER research scientist, summarizes a recent paper given at the Pan American Conference of Unsaturated Soils. The paper, “Comparing in situ soil water characteristic curves to those generated in the lab” by Campbell et al. (2018), illustrates how well in situ generated SWCCs using the TEROS 21 calibrated matric potential sensor and METER’s GS3 water content sensor compare to those created in the lab.

Watch the webinar below:

&nbsp

Download the “Researcher’s complete guide to water potential”—>

Download the “Researcher’s complete guide to soil moisture”—>

How to Create a Full Soil Moisture Release Curve

Two Old Problems

Soil moisture release curves have always had two weak areas: a span of limited data between 0 and -100 kPa and a gap around field capacity where no instrument could make accurate measurements.

Plant sprouting from the soil

Using HYPROP with the redesigned WP4C, a skilled experimenter can now make complete high-resolution moisture release curves.

Between 0 and -100 kPa, soil loses half or more of its water content. If you use pressure plates to create data points for this section of a soil moisture release curve, the curve will be based on only five data points.

And then there’s the gap. The lowest tensiometer readings cut out at -0.85 MPa, while historically the highest WP4 water potential meter range barely reached -1 MPa. That left a hole in the curve right in the middle of plant-available range.

New Technology Closes the Gap

Read more

Download the “Researcher’s complete guide to water potential”—>

Download the “Researcher’s complete guide to soil moisture”—>