Skip to content

Posts tagged ‘TDR Probes’

Top Five Blog Posts in 2017

In case you missed them the first time around, here are the most popular Environmental Biophysics.org blog posts in 2017.

Soil Moisture Sensors: Why TDR vs. Capacitance May Be Missing the Point

Researcher holding a soil sensor in front of a field

Soil moisture sensor

Time Domain Reflectometry (TDR) vs. capacitance is a common question for scientists who want to measure volumetric water content (VWC) of soil, but is it the right question?  Dr. Colin S. Campbell, soil scientist, explains some of the history and technology behind TDR vs. capacitance and the most important questions scientists need to ask before investing in a sensor system. Read more

Get More From your NDVI Sensor

Looking up at tree branches from the ground

Modern technology has made it possible to sample Normalized Difference Vegetation Index (NDVI) across a range of scales both in space and in time, from satellites sampling the entire earth’s surface to handheld small sensors that measure individual plants or even leaves.  Read more

Improved Methods Save Money in Future Borehole Thermal Energy Storage Design

Image of a city with many buildings

Globally, the gap between the energy production and consumption is growing wider. To promote sustainability, University of California San Diego PhD candidate and ASCE GI Sustainability in Geotechnical Engineering committee member, Tugce Baser, Dr. John McCartney, Associate Professor, and their research team, Dr. Ning Lu, Professor at Colorado School of Mines and Dr. Yi Dong, Postdoctoral Researcher at Colorado School of Mines, are working on improving methods for borehole thermal energy storage (BTES), a system which stores solar heat in the soil during the summer months for reuse in homes during the winter. Read more

New Weather Station Technology in Africa

Happy students gathered around an ATMOS 41 weather station

Weather data, used for flight safety, disaster relief, crop and property insurance, and emergency services, contributes over $30 billion in direct value to U.S. consumers annually. Since the 1990’s in Africa, however, there’s been a consistent decline in the availability of weather observations. Read more

Electrical Conductivity of Soil as a Predictor of Plant Response

Corn stalks looking up at the sky from the ground

Plants require nutrients to grow, and if we fail to supply the proper nutrients in the proper concentrations, plant function is affected. Fertilizer in too high concentration can also affect plant function, and sometimes is fatal.  Read more

And our three most popular blogs of all time:

Estimating Relative Humidity in Soil: How to Stop Doing it Wrong

Image of a tree in the desert

Estimating the relative humidity in soil?  Most people do it wrong…every time.  Dr. Gaylon S. Campbell shares a lesson on how to correctly estimate soil relative humidity from his new book, Soil Physics with Python, which he recently co-authored with Dr. Marco Bittelli.  Read more

How to Measure Water Potential

Plants sprouting out of the sand

In the conclusion of our three-part water potential series, we discuss how to measure water potential—different methods, their strengths, and their limitations. Read more

Do the Standards for Field Capacity and Permanent Wilting Point Need to be Reexamined?

Image of rolling fields in front of mountains

We were inspired by this Freakonomics podcast, which highlights the bookThis Idea Must Die: Scientific Problems that are Blocking Progress, to come up with our own answers to the question:  Which scientific ideas are ready for retirement?  We asked scientist, Dr. Gaylon S. Campbell, which scientific idea he thinks impedes progress.  Here’s what he had to say about the standards for field capacity and permanent wilting point. Read more

Get info on applied environmental research in our

See weather sensor performance data for the ATMOS 41 weather station.

Explore which weather station is right for you.

Download the “Researcher’s complete guide to soil moisture”—>

Soil Moisture Sensors: Why TDR vs. Capacitance May Be Missing the Point

Time Domain Reflectometry (TDR) vs. capacitance is a common question for scientists who want to measure volumetric water content (VWC) of soil, but is it the right question?  Dr. Colin S. Campbell, soil scientist, explains some of the history and technology behind TDR vs. capacitance and the most important questions scientists need to ask before investing in a sensor system.

Image of a telephone poll standing in front of the ocean

TDR began as a technology the power industry used to determine the distance to a break in broken power lines.

Clarke Topp

In the late 1970s, Clarke Topp and two colleagues began working with a technology the power industry used to determine the distance to a break in broken power lines.  Time Domain Reflectometers (TDR) generated a voltage pulse which traveled down a cable, reflected from the end, and returned to the transmitter. The time required for the pulse to travel to the end of the cable directed repair crews to the correct trouble spot. The travel time depended on the distance to the break where the voltage was reflected, but also on the dielectric constant of the cable environment.  Topp realized that water has a high dielectric constant (80) compared to soil minerals (4) and air (1).  If bare conductors were buried in soil and the travel time measured with the TDR, he could determine the dielectric constant of the soil, and from that, its water content.  He was thus able to correlate the time it took for an electromagnetic pulse to travel the length of steel sensor rods inserted into the soil to volumetric water content. Despite his colleagues’ skepticism, he proved that the measurement was consistent for several soil types.

Close up of solar panels

TDR sensors consume a lot of power. They may require solar panels and larger batteries for permanent installations.

TDR Technology is Accurate, but Costly

In the years since Topp et al.’s (1980) seminal paper, TDR probes have proven to be accurate for measuring water content in many soils. So why doesn’t everyone use them? The main reason is that these systems are expensive, limiting the number of measurements that can be made across a field. In addition, TDR systems can be complex, and setting them up and maintaining them can be difficult.  Finally, TDR sensors consume a lot of power.  They may require solar panels and larger batteries for permanent installations. Still, TDR has great qualities that make these types of sensors a good choice.  For one thing, the reading is almost independent of electrical conductivity (EC) until the soil becomes salty enough to absorb the reflection.  For another, the probes themselves contain no electronics and are therefore good for long-term monitoring installations since the electronics are not buried and can be accessed for servicing, as needed.  Probes can be multiplexed, so several relatively inexpensive probes can be read by one set of expensive electronics, reducing cost for installations requiring multiple probes.

Close up of cracked soil

Many modern capacitance sensors use high frequencies to minimize effects of soil salinity on readings.

Advances in Electronics Enable Capacitance Technology

Dielectric constant of soil can also be measured by making the soil the dielectric in a capacitor.  One could use parallel plates, as in a conventional capacitor, but the measurement can also be made in the fringe field around steel sensor rods, similar to those used for TDR.  The fact that capacitance of soil varies with water content was known well before Topp and colleagues did their experiments with TDR.  So, why did the first attempt at capacitance technology fail, while TDR technology succeeded? It all comes down to the frequency at which the measurements are made.  The voltage pulse used for TDR has a very fast rise time.  It contains a range of frequencies, but the main ones are around 500 MHz to 1 GHz.  At this high frequency, the salinity of the soil does not affect the measurement in soils capable of growing most plants.  

Like TDR, capacitance sensors use a voltage source to produce an electromagnetic field between metal electrodes (usually stainless steel), but instead of a pulse traveling down the rods, positive and negative charges are briefly applied to them. The charge stored is measured and related to volumetric water content. Scientists soon realized that how quickly the electromagnetic field was charged and discharged was critical to success.  Low frequencies led to large soil salinity effects on the readings.  This new understanding, combined with advances in the speed of electronics, meant the original capacitance approach could be resurrected. Many modern capacitance sensors use high frequencies to minimize effects of soil salinity on readings.  

Image of Mars on a close up

NASA used capacitance technology to measure water content on Mars.

Capacitance Today is Highly Accurate

With this frequency increase, most capacitance sensors available on the market show good accuracy. In addition, the circuitry in them can be designed to resolve extremely small changes in volumetric water content, so much so, that NASA used capacitance technology to measure water content on Mars. Capacitance sensors are lower cost because they don’t require a lot of circuitry, allowing more measurements per dollar. Like TDR, capacitance sensors are reasonably easy to install. The measurement prongs tend to be shorter than TDR probes so they can be less difficult to insert into a hole. Capacitance sensors also tend to have lower energy requirements and may last for years in the field powered by a small battery pack in a data logger.   

In two weeks: Learn about challenges facing both types of technology and why the question of TDR vs. Capacitance may not be the right question.

Watch the webinar

In this webinar, Dr. Colin Campbell discusses the details regarding different ways to measure soil moisture and the theory behind the measurements.  In addition, he provides examples of field research and what technology might apply in each situation. The measurement methods covered are gravimetric sampling, dielectric methods including TDR and FDR/capacitance, neutron probe, and dual needle heat pulse.

 

Get more information on applied environmental research in our

Take our Soil Moisture Master Class

Six short videos teach you everything you need to know about soil water content and soil water potential—and why you should measure them together.  Plus, master the basics of soil hydraulic conductivity.

Watch it now—>

Download the “Researcher’s complete guide to soil moisture”—>

Can Wastewater Save The United Arab Emirates’ Groundwater?

The hyper-arid United Arab Emirates (UAE) has a rapidly dwindling supply of groundwater, and that water is becoming increasingly saline.

Image of the city of Dubai at night on the coast of the UAE

Dubai is situated on the coast of the UAE.

With very little recharge and irrigation comprising 75% of groundwater use, natural water resources in this region are disappearing fast.  PhD candidate Wafa Al Yamani works for the Environmental Agency of Abu Dhabi, which has contracted with Plant and Food Research in New Zealand to investigate using treated sewage effluent and groundwater for irrigating the desert forests along their motorways.  

Sidr tree plantation in the UAE forest in the sand

Sidr trees in the UAE forest.

The Desert Forests

The UAE desalinates all the water for their cities, so the tertiary treated sewage effluent from these cities could be a viable resource, replacing some groundwater for irrigation of the desert forests. These forests perform a wide range of ecosystem services from sand stabilization along all UAE motorways to harboring a great deal of biodiversity.  There is also a cultural association with the forests.  The original ruler of the UAE, Sheikh Zayed, embarked on a program in the 1970s of “greening the desert,” so the people see the desert forests as a legacy of their founder.

Infiltrometer pushing sand and being measured

Infiltrometers were used to examine how the drip irrigation system worked.

Measuring Water Use:

Wafa and her PhD advisor, Dr. Brent Clothier, had a goal to minimize groundwater use and maximize value by quantifying the irrigation needs of the UAE’s five most important desert-forestry species.  They also wanted to determine the impact of treated sewage effluent on forest growth and health.  They used infiltrometers to examine how the drip irrigation system worked.  Dr. Clothier says, “These soils have hydraulic conductivities of between 2 and 5 meters an hour.  They are highly permeable desert sands.  We can find out how wide the bulb (the wetted area underneath an irrigation dripper) is and how deep the water will travel by using an infiltrometer to look at the hydraulic properties of the soil.”  Dr. Clothier has also developed software to predict water movement radially, with depth and with the time that the drippers are on.  He comments, “We’ve now got a setup of two drippers per tree, and we will use that in the future for modeling how the trees are taking up water from the root zone.”

Tree with 20cm dykes accessing the dripper water

Researchers built dykes of 20 cm to stop surface redistribution of dripper water.

The scientists used a heat pulse method to measure tree water-use by comparing sap flow with evaporative demand (ETo).  They used Time Domain Reflectometry (TDR) to measure soil water content, and they have developed a “light stick” using light sensors to detect the shadow area of the trees to measure trees’ leaf area in order to predict the crop factor that will enable prediction of tree water-use from ETo.

Next week:  Find out how Wafa and her team use infiltrometers to predict dripper behavior and how the treated effluent resolves salinity issues.

Download the “Researcher’s complete guide to soil moisture”—>

Get more information on applied environmental research in our

The Scientific Instrumentation Museum of Horrors

Chris Chambers is the primary technical support scientist at METER.  Deep within the recesses of his office, there is a collection of scientific instrumentation we like to call the “Museum of Horrors”.  It showcases the many instruments that have been mangled and destroyed over the years by insects, animals, or the environment.

Melted Serial Cable sitting on a stone

This serial cable melted when it got too close to a sample heating oven.

We get a few instruments back every year that are burned up in a fire, chewed up by rodents, and occasionally we get one that’s been exploded by lightning. We interviewed Chris to find out how to prevent scientific instrumentation from being damaged or destroyed by these types of natural disasters.

Soil Moisture Sensor that got Eaten by Ants

Beware of ant hills. This soil moisture sensor got eaten by ants.

Animals and insects:

The single most important thing you can do to prevent damage from animals is to protect your cables. You can protect your cables with cable armor, electrical conduit, or PVC pipe. Even better is to place cables in some type of conduit and then bury it.  Keeping things tidy around the data logger and avoiding exposed cables as much as possible will go a long way toward preventing animals and insects from ruining your experiment.

An ECH2010 Laying in Dirt and Chipped by a Shovel

A retired ECH2O10 that was hit by a shovel.

Lightning:

Lightning is not as big of a danger on METER loggers as it is with third party loggers (read about logger grounding here). Where we typically see people run into problems with lightning is when they have long lengths of cable between the data logger and sensor. Long cable runs act like lightning harvesting antennae.  The best thing to do is to keep the cables shorter and do not spread them out in lots of different directions.

TEROS12 with a Bent Needle from Being Pushed into a Rock

This soil moisture sensor was pushed into a rock.

Wildfire:

We have a few instruments every year that get burned up in fires, but there is not much you can do about this hazard except for watching for reports of encroaching fires that may be in your surrounding area and evacuating important instrumentation.

Data Logger that was Struck by Lightning Laying in Bark

data logger that was struck by lighting.

Flooding:

The worst killer of data loggers is flooding.  We have a lot of customers that try and bury their loggers, and that’s generally a terrible idea.  Unless you can guarantee the logger will be waterproofed and put some desiccant inside the box, it will probably end badly.  There are a few scientists out there that have done a really good job of waterproofing, but they generally spend almost as much effort and money waterproofing as they do purchasing the actual logger.

There’s always going to be some risk to your scientific instrumentation because you’re installing it outside, but hopefully, these tips will help you avoid disaster and keep your system out of the museum of horrors.

Download the “Researcher’s complete guide to soil moisture”—>

Get more information on applied environmental research in our

TDR versus Capacitance or FDR

When we talk with scientists at conferences they often want to know the difference between TDR versus capacitance or FDR.  We’ve written a paper about this in our app guide that has been pretty popular, but it can be difficult to find on our website. Here is an introduction and a link if you are interested in learning more.

TDR Sensor Installation (Giulio Curioni, School of Civil Engineering, Univ. of Birmingham)

TDR Sensor Installation (Giulio Curioni, School of Civil Engineering, Univ. of Birmingham)

Capacitance and TDR techniques are often grouped together because they both measure the dielectric permittivity of the surrounding medium. In fact, it is not uncommon for individuals to confuse the two, suggesting that a given probe measures water content based on TDR when it actually uses capacitance.

TDR

10HS capacitance sensor

With that in mind, we will try to clarify the difference between the two techniques. The capacitance technique determines the dielectric permittivity of a medium by measuring the charge time of a capacitor, which uses that medium as a dielectric. We first define a relationship between the time, t, it takes to charge a capacitor from a starting voltage, Vi , to a voltage V, with an applied voltage, Vf.  Read more….

Watch the webinar

In this webinar, Dr. Colin Campbell discusses the details regarding different ways to measure soil moisture and the theory behind the measurements.  In addition, he provides examples of field research and what technology might apply in each situation. The measurement methods covered are gravimetric sampling, dielectric methods including TDR and FDR/capacitance, neutron probe, and dual needle heat pulse.

 

Take our Soil Moisture Master Class

Six short videos teach you everything you need to know about soil water content and soil water potential—and why you should measure them together.  Plus, master the basics of soil hydraulic conductivity.

Watch it now—>

Download the “Researcher’s complete guide to soil moisture”—>

New Applications in Archeology for TDR Probes Measuring Water Content

Recently, I spent a day at the University of Birmingham in the UK where I talked with Dr. Nicole Metje and researchers in the Civil Engineering department.  They are working on a project called, “Mapping the Underworld,” (Curioni G., Chapman D.N., Metje N., Foo K.Y., Cross J.D. (2012) Construction and calibration of a field TDR monitoring station. Near Surface Geophysics, 10, 249-261) where they are using TDR probes to help locate buried objects that require maintenance.

tdr probes

University of Birmingham Clock Tower

Currently, people use rudimentary tools to poke around and figure out where the buried object is.  A more effective high-tech solution is GPR (Ground Penetrating Radar) that is pulled over the top of the soil and creates a 2D image of permittivity below the ground surface.  The problem is GPR only provides relative depth information and must have ancillary data to produce actual values. To address this issue, their group uses TDR probes (time domain reflectometry) which measure dielectric permittivity to ground truth the GPR.  Using this method they hope to be able to predict the depth to anomalies that are observed in the 2D GPR output.

tdr probes

Sensor Installation Pit

After working on this for some time, the engineers at the University of Birmingham continue to deal with challenges related to TDR signal, interpretation, and maintenance.  One challenge is that TDR systems are complex and power hungry. Thus, the researchers were interested in learning more about soil moisture sensing and different technologies that would help them meet their project goals. My first inclination was to solve their problem with water potential sensors.  Many people who work in environmental applications want to know the fate and distribution of water where water potential is the driver.  Interestingly, this is one of the few cases where people actually do need permittivity measurements (the value used to derive volumetric water content, VWC) instead of water potential because they use the actual permittivity signal to ground truth the GPR.  This realization spawned a four-hour discussion on the frontiers of permittivity measurement in soil and the use of advanced analysis techniques to tease out important soil properties such as bulk density, electrical conductivity, and mineralogy.

I hadn’t given much thought to using soil science instrumentation to locating buried infrastructure.  I’m excited to see what the combination of a new technology like GPR and dielectric measurement can do to help us solve everyday problems like where to start digging.

Download the “Researcher’s complete guide to water potential”—>

Download the “Researcher’s complete guide to soil moisture”—>

Get more information on applied environmental research in our