Skip to content

Posts tagged ‘Water content’

Author Interview: Soil Physics with Python

The new book Soil Physics with Python: Transport in the Soil-Plant-Atmosphere System written by Dr. Marco Bitteli, Dr. Gaylon S. Campbell, and Dr. Fausto Tomei presents concepts and problems in soil physics as well as solutions using original computer programs.

Picture of the cover of the book "Soil Physics with Python" by Marco Bittelli, Gaylon S. Campbell, and Fausto Tomei

Soil Physics with Python

In contrast to the majority of the literature on soil physics, this text focuses on solving, not deriving, differential equations for transport. Numerical methods convert differential equations into algebraic equations, which can be solved using conventional methods of linear algebra.  Here, Dr. Campbell interviews about this update to his classic book Soil Physics with BASIC.

Why did you write the first book, Soil Physics with BASIC?

Soil physics classes were always frustrating for me because you would spend time writing fancy equations on the chalkboard, and in the end, you couldn’t do anything with them.  You couldn’t solve any of the problems because, even though they involved difficult mathematics, the math was still so simplified that it didn’t apply to anything that went on in nature.

When I taught my first graduate soil physics class, I determined that we were going to be able to do something by the time we finished.  Luckily, in the mid-1970s, personal computers were being developed, and I realized this was the answer to my problem.  Numerical methods could solve any problem with any geometry in it.  It wasn’t limited to problems that fit the assumptions needed to derive a complex differential equation.  I could write computer programs that simplified the mathematics for the students and teach them how to solve those problems using numerical methods.  By the end of the semester, my students would have a set of tools that they could use to solve problems in the real world.  

Did this book come from class notes or some other source?  

I wrote two textbooks and they both came the same way.  When I first started teaching, I had a textbook that was inadequate, so I began writing notes of my own and handing them out to the students.   After two years, I turned these notes into An Introduction to Environmental Biophysics.  Soil Physics with BASIC came about by the same process, but I enlisted the help of my daughter, Julia, to type it up. It was in the early days of word processing so entering equations was quite difficult.  It all went well for her until chapter eight, which was a nightmare of greek symbols. After she finished slogging for days through the material, we somehow lost the chapter.  She retyped it, and we lost it again, making her type it three times!  We didn’t have spreadsheets then either, so the figures were all hand-drawn by my daughter, Karine.

Red soil in the desert with trees and brush around

Marco [Bitteli] has added two and three-dimensional flow problems, so you can model whole landscapes and water behavior in an entire terrain.

What does Soil Physics with Python add to the conversation?

First, it updates the programming language.  BASIC was a language invented at Dartmouth and intended to be a simple teaching language.  It was never supposed to be a scientific computer language.  Python (13:26.) is a newer language, and there are many open source programs for it, making it a better language to use for science.

Secondly, the old book had one-dimensional flow problems in it for the most part, but Marco [Bitteli] has added two and three-dimensional flow problems, so you can model whole landscapes and water behavior in an entire terrain.

In addition, Dr. Bitteli describes the process and analysis of soil treated as fractals as well as soil image analysis.  There are a lot of extensions and updates that weren’t in the original book.  

Will it be accessible across all disciplines?

To some extent, different disciplines speak different languages.  A soil physicist talks about water potential, and a geotechnical engineer talks about soil suction. Thus, there may be some translation of discipline-specific terms, but it’s intended to be a book that people in the plant sciences can use along with people in the soil sciences.

Dr. Marco Bitteli earned his PhD at Washington State University and was Dr. Campbell’s former student.  This book is a product of their continued collaboration. Dr. BBitteli is now a professor at University of Bologna, the oldest university in operation in the world.  Soil Physics with Python  is available at Amazon.com.

Download the “Researcher’s complete guide to water potential”—>

Download the “Researcher’s complete guide to soil moisture”—>

Get more information on applied environmental research in our

New Medium Scale Soil Moisture Measurement Technique

Between dielectric soil moisture sensors with a volume of influence measured in liters and remote sensing systems which measure soil moisture on the scale of kilometers, there is a gap—a gap Dr. Larry Murdoch of Clemson University has been working to fill. In this post, read about the DELTA (Displacement Extensometer for Lysimetric Terrain Analysis), an instrument that measures water content measurements over an area with a 25 m radius.

Close up picture of cracked and dried soil

Dr. Murdoch became interested in how much water content was in the vadose zone (the unsaturated soil above the water table). He wondered if he could use a strain measuring technique to quantify it.

A New Idea:

Dr. Murdoch was a graduate student in structural geology and geomechanics in the mid-1980s, working on the mechanics of hydraulic fractures in soil.  He developed techniques for environmental “fracking” to clean up contaminated soil, long before the recent applications by the oil industry that have caused fracking to become a household word.  Fracking causes movements in soil, and Dr. Murdoch developed methods for measuring those movements in order to monitor fracture displacement. This led to work on sensitive borehole extensometers that could measure small strains in rock during well testing.

In the course of his hydrology work, Dr. Murdoch became interested in how much water content was in the vadose zone (the unsaturated soil above the water table). He wondered if he could use the strain measuring technique to quantify it.  He decided to bore a hole into the vadose zone and insert a simplified extensometer device that could measure the strain as the soil expands and contracts.  This would allow him to gauge the weight change of the overburden.  Then, because other mass changes are relatively minor compared to the water in the soil, that weight change would enable him to determine water content.

Since soil compresses more than bedrock, Dr. Murdoch developed a method where he inserted two anchors and cylinders that are pressed up against the soil borehole.  In the middle of these cylinders is a fiberglass rod held tight by the bottom anchor which is able to move inside the top anchor.  The anchors move up and down from the stress on the soil, and this movement is transferred to the rod where it can be measured with a high-resolution displacement transducer.

Diagram of the Delta (Displacement Extensometer for Lysimetric Terrain Analysis)

Diagram of the DELTA (Displacement Extensometer for Lysimetric Terrain Analysis)

Dr. Murdoch’s device is so sensitive that when it is buried 6 m, it will register clear strain signals as his student walks over it. The weight of a person causes around 50 nanometers of displacement at the Clemson Field site, but the instrument itself can resolve displacement approaching 1 nanometer. And the diameter of measurement on the surface is about 4 times the depth.  So if you install the system at 7m, you’d be measuring about a 25 m diameter circle on top.

Like almost all other water content techniques, the challenge is removing all other confounding factors that affect the measurement. It has been said that all sensors are temperature sensors first.  Not surprisingly, one thing that causes errors in the system is temperature, though Dr. Murdoch’s team has dealt with that by getting the system deep in the soil and putting the electronics near it so the temperature change is small.  Barometric pressure also produces cyclical loading of soil mass and requires correction over a range of periods. And, since the calculation of water content requires an estimate of the soil elasticity, changes in soil moisture also may affect the measurement. Considerable work has been done and significant progress has been made in dealing with these and other issues with the extensometer approach.

picture of a field with a barn in the distance and the ski orange and grey

An advantage of the system is its ability to be buried. In order to plow, for example, all you have to do is pull the sensor up, take off the top plastic casing, and cap it, and the grower can drive a plow over the top.

Strengths:

The amazing thing is that Dr. Murdoch’s system can resolve less than a millimeter of rain water falling on the soil surface, and it can match trends over time. In addition, you can easily calibrate the system by getting your 190-pound student to walk over the top of it and then checking that the compressibility of the soil matches that weight.

Another advantage of the system is its ability to be buried.  In order to plow, for example, all you have to do is pull the sensor up, take off the top plastic casing, and cap it, and the grower can drive a plow over the top. Finding the installation can be challenging, so it must be located by precision GPS or survey equipment prior to burial. But, if done correctly, the site can be monitored for long periods of time.

Though not yet a final technology, the Delta extensometer did correlate well with point measurements of water content and shows a lot of promise. The instrument was developed with funding from the National Science Foundation. Colby Thrash, a grad student at Clemson, has done much of the recent work. Dr. Murdoch’s team will publish a paper describing the technique soon in Water Resources Research.

Download the “Researcher’s complete guide to soil moisture”—>

Get more information on applied environmental research in our

Water Potential Versus Water Content

Dr. Colin Campbell, soil physicist, shares why he thinks measuring soil water potential can be more useful than measuring soil water content.

A horsetail plant showing possible signs of guttation where the water potential in the soil overnight is high enough to force water out of the stomates in the leaves.

A horsetail plant showing possible signs of guttation where the water potential in the soil overnight is high enough to force water out of the stomates in the leaves.

I know an ecologist who installed an extensive soil water content (VWC) sensor network to study the effect of slope orientation on plant available water.  He collected good VWC data, but ultimately he was frustrated because he couldn’t tell how much of the water was available to plants.

He’s not alone in his frustration. Accurate, inexpensive soil moisture sensors have made soil VWC a justifiably popular measurement, but as many people have discovered, a good hammer doesn’t make every soil water problem a nail. I like to compare water potential to temperature because both are considered “intensive” variables that define the intensity of something.

People often try to quantify their own environment, because those measurements define comfort and happiness.  Long ago, they discovered they could make an enclosed glass tube, put mercury inside, and infer this intensive variable called temperature from the changes in the mercury’s volume. This was an obvious way to define the comfort level of a human being.

Thermometer laying on top of wood

People discovered they could make an enclosed glass tube, put mercury inside, and infer an intensive variable called temperature.

They could have measured the heat content of their surroundings.  But they would have discovered that while heat content would be higher in a larger room and lower in a smaller room, you would feel the same comfort level in both rooms.  The temperature measurement helps you know whether or not you’d be comfortable without any other variables entering into the equation.

Similar to heat content, water content is an amount. It’s an extensive variable.  It changes with size and situation. Consider the following paradoxes:

  • A soil with fairly low volumetric water content can have plenty of plant-available water and a soil with high water content can have almost none.
  • Gravity pulls water down through the profile, but water moves up into the soil from a water table.
  • Two adjacent patches of soil at equilibrium can have significantly different water content.

In these and many other cases, water content data can be confusing because they don’t predict how water moves.  Water potential measures the energy state of water and thus explains realities of water movement that otherwise defy intuition. Like temperature, water potential defines the comfort level of a plant.   Similar to the room size analogy for temperature, if we know the water potential, we can know whether plants will grow well or be stressed in any environment.

sand with plants poking out and a blue sky in the background

Soil, clay, sand, potting soil, and other media, all hold water differently.

Plants don’t understand the concept of a content in terms of “comfort” because soil, clay, sand, potting soil, and other media, all hold water differently.  Imagine a sand with 30% water content. Due to its low surface area, the sand will be too wet for optimal plant growth, threatening a lack of aeration to the roots, and flirting with saturation.  Now consider a fine textured clay at that same 30% water content. The clay may appear only moist and be well below optimum “comfort” for a plant due to the surface of the clay binding the water and making it less available to the plant.

Water potential measurements clearly indicate plant available water, and, unlike water content, there is an easy reference scale. We know that plant optimal runs from about -2-5 kPa which is on the very wet side, to about -100 kPa, at the drier end of optimal.  Below that plants will be in deficit, and past -1000 kPa they start to suffer.  Depending on the plant, water potentials below -1000 to -2000 kPa cause permanent wilting.

So, why would we want to measure water potential? Water content can only tell you how much water you have.  If you want to know how fast water can move, you need to measure hydraulic conductivity.  If you want to know whether water will move and where it’s going to go, you need water potential.

Learn more

Soil moisture is more than just knowing the amount of water in soil. Learn basic principles you need to know before deciding how to measure it. In this 20-minute webinar, discover:

  • Water content: what it is, how it’s measured, and why you need it
  • Water potential: what it is, how it’s different from water content, and why you need it
  • Whether you should measure water content, water potential, or both
  • Which sensors measure each type of parameter

Many questions about water availability and movement are best answered by measuring water potential.  To find out more, watch any of the virtual seminars below, or visit our new water potential website.

Download the “Researcher’s complete guide to water potential”—>

Water Potential 101: Making Use of an Important Tool

Water Potential 201:  Choosing the Right Instrument

Water Potential 301: How to Push Your Instruments Past their Specifications

Water Potential 401: Advances in Field Water Potential

Find out when you should measure both water potential and water content.

Take our Soil Moisture Master Class

Six short videos teach you everything you need to know about soil water content and soil water potential—and why you should measure them together.  Plus, master the basics of soil hydraulic conductivity.

Watch it now—>

Download the “Researcher’s complete guide to soil moisture”—>

What is the Future of Sensor Technology?

Dr. John Selker, hydrologist at Oregon State University and one of the scientists behind the Trans African Hydro and Meteorological Observatory (TAHMO) project, gives his perspective on the future of sensor technology.

Researcher Pointing to Something while Walking through a Forest

Dr. John Selker (Image: andrewsforest.oregonstateuniversity.edu)

What sparked your interest in science?

I was kind of an accidental scientist in a sense. I went into water resources having experienced the 1985 drought in Kenya. I saw that water was transformative in the lives of people there. I thought there were lots of things we could do to make a difference, so I wanted to become a water resource engineer. It was during my graduate degree process that I got excited about science.

What was the first sensor you developed?

I’ve been developing sensors for a long time.  I worked at some national labs on teams developing sensors for physics experiments. The first one I developed myself was as an undergraduate student in physics. I was the lab instructor for the class, and I wanted to do something on my own while the students were busy. I made a non-contact bicycle speedometer which was much like an anemometer. I took an ultrasonic emitter, trained it on the tire, and I could get the beat frequency between emitted sound and the backscatter to get the bicycle speed.

What’s the future of sensor technology?

Communication

Right now one of the very exciting advances in technology is communication. Having sensors that can communicate back to the scientists immediately makes a huge difference in terms of knowing how things are going, making decisions on the fly, and getting good quality data.  Oftentimes in the past, a sensor would fail and you wouldn’t know about it for months.  Cell phone technology and the ability to run a station on a few AA batteries for years has been the most transformative aspect of technological development.  The sensors themselves also continue to improve: getting smaller and using less energy, and that’s excellent progress as well.

A Picture of a Orange Maple Leaf in the middle of Fall

What often happens is that you install a solar sensor, and then a leaf or a dust grain falls on it, and you lose your accuracy.

Redundancy

I think the next big thing in sensing technology is how to use what we might call “semi-redundant” sensing.  What often happens is that you install a solar sensor, and then a leaf or a dust grain falls on it, and you lose your accuracy.  However, if you had a solar panel and a solar sensor, you could then do comparisons.  Or if you were using a wind sensor and an accelerometer you could also compare data. We now have the computing capability to look at these things synergistically.

Accuracy

What I would say in science is that if we can get a few more zeros: a hundred times more accurate, or ten times more frequent measurements, then it would change our total vision of the world.  So, what I think we’re going to have in the next few years, is another zero in accuracy.  I think we’re going to go from being plus or minus five percent to plus or minus 0.5 percent, and we are going to do that through much more sophisticated intercomparisons of sensors.  As sensors get cheaper, we can afford to have more and more related sensors to make those comparisons.  I think we’re going to see this whole field of data assimilation become a critical part of the proliferation of sensors.

What are your thoughts on the future of sensor technology?

Get more information on applied environmental research in our

Download the “Researcher’s complete guide to soil moisture”—>

Take our Soil Moisture Master Class

Six short videos teach you everything you need to know about soil water content and soil water potential—and why you should measure them together.  Plus, master the basics of soil hydraulic conductivity.

Watch it now—>

Small Company, Big Mission: The Phoenix Mars Lander & TECP Sensor

On May 25, 2008 NASA’s Phoenix Lander successfully landed on the surface of Mars and used a robotic scoop arm to deliver regolith samples to the suite of instruments on the deck of the Lander—with one exception. The Thermal and Electrical Conductivity Probe (TECP), designed by a team of Decagon (now METER) research scientists, was mounted on the knuckle of the robotic arm and made direct contact with the regolith. It measured thermal conductivity, thermal diffusivity, electrical conductivity, and dielectric permittivity of the regolith, as well as vapor pressure of the air.

But, that’s starting at the end of the story.  The fact is that TECP almost didn’t get started.  After seeing a thermal properties needle at the American Geophysical Union meeting in San Francisco, Mike Hecht (project leader on the Mars Environmental Compatibility Assessment (MECA) instrument suite) encouraged his colleague Martin Buehler to call Decagon (now METER) to see if we’d be willing to participate in the Phoenix Lander project. When Martin called one Friday afternoon, announcing that he was from JPL and wondering if we would be willing to fly our sensor on the Phoenix Lander, I was instantly intimidated. I knew JPL was associated with NASA, and I couldn’t imagine why they would be calling Decagon.  I always thought there was a fundamental relationship between NASA and Lockheed Martin, Northrop Grumman, and other major companies that did NASA work.  I told him that Decagon, which was much smaller in those days, didn’t have the capacity to develop instrumentation for space flight. He suggested they come up for a visit and at least consult with us on what they would need to do to obtain this measurement.  The following Monday, we were talking Martian science and inexorably hooked on the idea of joining the team.

The NASA Logo in Front of the NASA Building

I knew JPL was associated with NASA, and I couldn’t imagine why they would be calling Decagon.

Deciding to put one of our sensors on Mars did nothing to lessen the intimidation factor. But, working with Mike and his team at JPL/NASA taught us that doing amazing science can be an inspiring and collaborative effort. I’d always imagined NASA as a group of uber-scientists and engineers sitting in glass offices dreaming up and executing great projects that would be impossible for mere mortals.  The reality is that sending something to Mars and having it do real science requires the combined effort of thousands of smart, dedicated people who are not that much different from the rest of us.

This idea was really brought home when we finally visited JPL. Although the things they were doing were amazing and on a much grander scale, they weren’t that much different from the things we do at Decagon.  They had testing facilities, development facilities, production facilities, and support personnel all working together on projects, just like us.  However, the projects were pretty amazing. We watched the robot arm being tested in a lab for the ability to dig martian soil analogs. We observed an ice probe working in a 55-gallon drum trying to prove it could melt its way down through the thick Martian polar ice caps. We were mesmerized by prototypes of Mars rovers being programmed and executing maneuvers on Martian surface analogs.

It was fun to discover who the Jet Propulsion Lab is and how enjoyable it is to collaborate with people that are thinking about new applications of technology.  This collaboration also benefitted METER’s thermal properties instrument because the mathematical models we developed for Mars made this sensor much more accurate and effective. The Mars project expanded both the depth of our understanding and the breadth of our perspective. Even so, it was fun to find out that scientists who work at JPL have to put their pants on one leg at a time, just like all of us.

Watch this virtual seminar where Dr. Mike Hecht talks Mars, poetry, and Decagon’s (now METER’s) involvement in the Mars Phoenix Lander Mission.

 

Get more information on applied environmental research in our

Download the “Researcher’s complete guide to soil moisture”—>

The Scientific Instrumentation Museum of Horrors

Chris Chambers is the primary technical support scientist at METER.  Deep within the recesses of his office, there is a collection of scientific instrumentation we like to call the “Museum of Horrors”.  It showcases the many instruments that have been mangled and destroyed over the years by insects, animals, or the environment.

Melted Serial Cable sitting on a stone

This serial cable melted when it got too close to a sample heating oven.

We get a few instruments back every year that are burned up in a fire, chewed up by rodents, and occasionally we get one that’s been exploded by lightning. We interviewed Chris to find out how to prevent scientific instrumentation from being damaged or destroyed by these types of natural disasters.

Soil Moisture Sensor that got Eaten by Ants

Beware of ant hills. This soil moisture sensor got eaten by ants.

Animals and insects:

The single most important thing you can do to prevent damage from animals is to protect your cables. You can protect your cables with cable armor, electrical conduit, or PVC pipe. Even better is to place cables in some type of conduit and then bury it.  Keeping things tidy around the data logger and avoiding exposed cables as much as possible will go a long way toward preventing animals and insects from ruining your experiment.

An ECH2010 Laying in Dirt and Chipped by a Shovel

A retired ECH2O10 that was hit by a shovel.

Lightning:

Lightning is not as big of a danger on METER loggers as it is with third party loggers (read about logger grounding here). Where we typically see people run into problems with lightning is when they have long lengths of cable between the data logger and sensor. Long cable runs act like lightning harvesting antennae.  The best thing to do is to keep the cables shorter and do not spread them out in lots of different directions.

TEROS12 with a Bent Needle from Being Pushed into a Rock

This soil moisture sensor was pushed into a rock.

Wildfire:

We have a few instruments every year that get burned up in fires, but there is not much you can do about this hazard except for watching for reports of encroaching fires that may be in your surrounding area and evacuating important instrumentation.

Data Logger that was Struck by Lightning Laying in Bark

data logger that was struck by lighting.

Flooding:

The worst killer of data loggers is flooding.  We have a lot of customers that try and bury their loggers, and that’s generally a terrible idea.  Unless you can guarantee the logger will be waterproofed and put some desiccant inside the box, it will probably end badly.  There are a few scientists out there that have done a really good job of waterproofing, but they generally spend almost as much effort and money waterproofing as they do purchasing the actual logger.

There’s always going to be some risk to your scientific instrumentation because you’re installing it outside, but hopefully, these tips will help you avoid disaster and keep your system out of the museum of horrors.

Download the “Researcher’s complete guide to soil moisture”—>

Get more information on applied environmental research in our

Do the Standards for Field Capacity and Permanent Wilting Point Need to Be Reexamined?

We were inspired by this Freakonomics podcast, which highlights the book, This Idea Must Die: Scientific Problems that are Blocking Progress, to come up with our own answers to the question:  Which scientific ideas are ready for retirement?  We asked METER scientist, Dr. Gaylon S. Campbell, which scientific idea he thinks impedes progress.  Here’s what he had to say about the standards for field capacity and permanent wilting point:

Canola Field right next to an eroded soil cliff

A layered soil, a soil that has a fine-textured horizon on top of a coarse-textured soil, will hold twice as much water as you’ll predict from the -⅓ bar value.

Idea:

The phrase, “this idea must die,” is probably too strong a phrase, but certainly some scientific ideas need to be reexamined, for instance the standard of -⅓ bar (-33 kPa) water potential for field capacity and -15 bars (-1500 kPa or -1.5 MPa) for permanent wilting point.

Where it came from:

In the early days of soil physics, a lot of work was done in order to establish the upper and lower limit for plant available water.  The earliest publication on the lower limit experiments was by Briggs and Shantz in 1913. They planted sunflowers in small pots under greenhouse conditions, letting the plants use the water until they couldn’t recover overnight, after which they carefully measured the water content (WC).  The ability to measure water potential came along quite a bit later in the 1930s using pressure plates.  As those measurements started to become available, a correlation was found between the 15 bar pressure plate WCs and the WCs that were determined by Briggs and Shantz’s earlier work.  Thus -15 bars (-1.5 MPa) was established as the lower limit of plant available water.  The source of the field capacity WC data that established a fixed water potential for the upper limit is less clear, but the process, apparently, was similar to that for the lower limit, and -⅓ bar was established as the drained upper limit water potential in soil.

Sunflowers against a blue sky

Briggs and Shantz planted sunflowers in small pots under greenhouse conditions, letting the plants use the water until they couldn’t recover overnight, after which they carefully measured the water content (WC).

Damage it does:  

In practice, using -15 bars to calculate permanent wilting point probably isn’t a bad starting point, but in principle, it’s horrible. Over the years we have set up experiments like Briggs and Shantz did and measured water potential. We have also measured field soils after plants have extracted all the water they can.  Permanent wilting point never once came out at -15 bars or -1.5 MPa.  For things like potatoes, it was approximately -10 bars (-1 MPa), and for wheat it was approximately -30 bars (-3 MPa).  We found that the permanent wilting point varies with the species and even with soil texture to some extent.

Of course, in the end it doesn’t matter much as the moisture release curve is pretty steep on the dry end, and whether you predict it to be 10 or 12% WC, it doesn’t make a huge difference in the size of the soil water reservoir that you compute.

However, on the field capacity end of the scale, it matters a lot.  If you went out and made measurements of the water potentials in soils a few days after a rain, it would be an absolute accident if any of them were ever -⅓ bar (-33 kPa).  I’ve never seen it.  A layered soil, a soil that has a fine-textured horizon on top of a coarse-textured soil, will hold twice as much water as you’ll predict from the -⅓ bar value.  On the other hand, if you’re getting pretty frequent rains or irrigation, that field capacity number becomes irrelevant. Thus, -⅓ bar may be a useful starting point for determining field capacity, but it’s only a starting point.

Why it’s wrong:

Field capacity and permanent wilting point are dynamic properties.  They depend on the rate at which the water is being extracted or the rate at which it’s being applied.  They also depend on the time you wait to sample after irrigation. Think of the soil as a leaky bucket.  If you were trying to carry water in a leaky bucket and you walked slowly, the bucket would be empty by the time you get the water where you want it. However, if you run fast, there will still be some water left in the bucket.  Similarly, if a plant can use water up rapidly, most of it will be intercepted, but if a plant is using water slowly, the water will move down past the root zone and out the bottom of the soil profile before the plant can use it.  These are dynamic phenomena that you are trying to describe with static variables.  And that’s where part of the problem comes.  We need a number to do our calculations with, but it’s important to understand the factors that affect that number.

Rye Field

Rye field

What do we do now:

What I hope we can do is better educate people. We should teach that we need a value we call field capacity or permanent wilting point, but it’s going to be a dynamic property.  We can start out by saying: our best guess is that it will be -⅓ bar for finer-textured soils and -1/10 bar (-10 kPa) for coarser-textured soils. But when we dig a hole and find out there is layering in the profile or textural discontinuities, we’d better adjust our number.  If we’re dealing with irrigated farmland, the adjustment will always be up, and if we’re dealing with dryland or rain-fed agriculture where the time between water additions is longer, we’ll use a lower number.

Some Ideas Never Die:

One of the contributors to the book, This Idea Must Die, Dr. Steve Levitt, had this to say about outdated scientific ideas, and we agree:  “I love the idea of killing off bad ideas because if there’s one thing that I know in my own life, it’s that ideas that I’ve been told a long time ago stick with me,  and you often forget whether they have good sources or whether they’re real. You just live by them. They make sense. The worst kind of old ideas are the ones that are intuitive. The ones that fit with your worldview, and so, unless you have something really strong to challenge them, you hang on to them forever.”

Harness the power of soil moisture

Researchers measure evapotranspiration and precipitation to understand the fate of water—how much moisture is deposited, used, and leaving the system. But if you only measure withdrawals and deposits, you’re missing out on water that is (or is not) available in the soil moisture savings account. Soil moisture is a powerful tool you can use to predict how much water is available to plants, if water will move, and where it’s going to go.

In this 20-minute webinar, discover:

  • Why soil moisture is more than just an amount
  • Water content: what it is, how it’s measured, and why you need it
  • Water potential: what it is, how it’s different from water content, and why you need it
  • Whether you should measure water content, water potential, or both
  • Which sensors measure each type of parameter

Take our Soil Moisture Master Class

Six short videos teach you everything you need to know about soil water content and soil water potential—and why you should measure them together.  Plus, master the basics of soil hydraulic conductivity.

Watch it now—>

Download the “Researcher’s complete guide to soil moisture”—>

Download the “Researcher’s complete guide to water potential”—>

The Right Auger For Water Content Sensor Installation

Traveling around the world, I’ve seen many ways to install soil moisture sensors.  Digging a trench to the required depth and inserting the sensors into the sidewall is certainly the most common technique. But using a shovel takes a lot of effort, especially in rocky soil.  To solve this problem, I like to use an auguring tool because of its ability to dig through soil to deeper depths without taking a lot of time. Also, the footprint of an augured hole is also only a few inches, which makes for a much cleaner installation.  Still, borrowing an auger from the lab next door and heading to the field may not be the best option.  This is what we did on the Cook Farm project a few years back.

Standard Bucket Auger

Standard bucket auger (image: www.atlanticsupply.com)

The Cook Agricultural Farm is a 37 Ha managed research site near Pullman, Washington where a combined team of Decagon and WSU scientists installed 150 water content sensors over 30 sites a few years ago. At each site, we used the techniques outlined in METER’s installation video, which can be found here.  However, the hardest thing about this installation was that we used some borrowed, standard bucket augers to bore the holes. These had a cutting surface along the bottom and an enclosed cylinder to hold the soil.  Once we filled that bucket, we had a difficult time getting the soil out which really slowed the installation.

Researcher Digging Soil Out of the Bucket Auger

Ben digging soil out of the bucket auger during the Cook Farm Installation, 2009.

Recently while traveling to Germany, I learned about the Edelman Auger.  The company that makes these (Eijkelkamp), says that most people in America use bucket augers to bore into fine soils which is needlessly time consuming.  Edelman Augers, originally designed by the Army to dig latrines, will save time and labor.

Edelman Auger

Edelman auger.

At first, I was skeptical.  It only had two cutting blades that ran up the auger in kind of loop; how would the soil lift out of the hole?  However, when I tried one later in the day, the auger cut through the soil, making a 10 cm hole with very little effort, and as I removed it, the soil came out easily.  It wasn’t hard to get the soil out from between the blades because there was no enclosed cylinder for the bucket.  I wish I’d known about this auger when I was trying to install sensors at the Cook Farm.

So, here are a few tips about augers to help you pick the best one for your work:

  • The Eijkelkamp Edelman augers are best for silty soils to clay soils so pick this one if you’re working in sites with these types of soils.  It’s also great for digging a quick latrine.
  • Bucket augers are best for sandy soils because of the enclosed cylinder will help lift the loose sand out of the borehole.
  • If you’re trying to install your soil moisture sensors in very rocky soils, try a stony soil auger.  It has big blades to help move small rocks and lift them out of the hole.

Download the “Researcher’s complete guide to soil moisture”—>

Get more information on applied environmental research in our

What Does SMAP Mean for In Situ Soil Water Content Measurement?

With the recent news coverage of the SMAP (Soil Moisture Active Passive) satellite launch, researchers may wonder:  what does remote sensing mean for the future of in situ measurements?  We asked two scientists, Drs. Colin Campbell and Chris Lund, for answers to this complex question.  Here’s what they had to say:

Satilight Sending Pictures to Earth

Image: www.jpl.nasa.gov

What is SMAP?

SMAP is an orbiting earth observatory that estimates soil moisture content in the top 5 cm of soil over the entire earth.  The mission is three years long with measurements taken every 2-3 days. This will allow seasonal changes around the world to be observed over time, improving our ability to manage water resources and better parameterize land surface models.  SMAP determines the amount of water found between the minerals, rocky material, and organic particles found in soil by measuring the ability of radar to penetrate the soil.  The wetter the soil is, the less the radar will penetrate.  SMAP has two different sensors on the platform: an L band aperture radar with a resolution of about a kilometer when it’s looking straight down (the pixel size is about 1 km by 1 km), combined with a passive radiometer with about 40 km of resolution.  This combination creates a synthetic product that takes advantage of the sensitivity of the radiometer.

What does SMAP mean for in situ soil water content measurement?

It’s all about scale: In some ways, comparing in situ to SMAP measurements is like comparing apples to…well…mountain-sized apples.  The two forms of measurement use vastly different scales.  In situ soil moisture sensors measure water content at the volume of several liters of soil, maximum. Even the sensor with the largest field of sensitivity, the neutron probe, can only integrate a volleyball-sized volume.  On the other hand, SMAP measures at a resolution of 1 km2, which is larger than the size of a quarter section, a large field for many farmers. Global soil moisture maps will allow scientists using SMAP to look at big picture applications like weather, climate and hydrological forecasting, drought, and flooding, while more detailed in situ measurements will tell a farmer when it’s time to water, or help researchers discover exactly why plants are growing in one location versus another.  The difference in spatial scale makes the two forms of measurement useful for very different research purposes and applications. However, there are applications where the two measurements can be complementary. Most notably, in situ measurements are often temporally rich while being spatially poor. But, SMAP can be used to scale in situ measurements to areas where in situ measurements are absent. In situ measurements can also be used as a source of validation data for SMAP-derived values for any location where both in situ and SMAP measurements overlap. Thus, there is opportunity for synergy when pairing SMAP and in situ measurements.

A Map

Satellite image in Winter.

What can SMAP do that in situ measurement can’t?

Scientists say they’ve seen a relationship between the top 5 cm of soil moisture and some factors related to climate change and weather. Because in situ soil sensors sample across a spatial footprint of a few meters, it can be very difficult to use their data to say anything about processes occurring across broad spatial scales; two liters of soil is not going to tell you anything about weather or flooding.  SMAP can help us better understand the interaction between the land surface and atmosphere, improving our understanding of the global water cycle as well as regional and global climate. This will help with forecasting crop yield, pest pressure, and disease…that’s big picture research.

 The productivity of a forest also may depend on the general soil moisture measured by SMAP.  For instance, if we got an idea of the soil moisture and greenness of a forest, we could tie together the approximate water availability and the resulting biomass accumulation with incoming solar radiation.  Better biomass accumulation models could lead to better validation of global carbon cycle models.

SMAP will also be able to detect dry areas across the U.S. and challenges they might present. Surface runoff that leads to flooding could also be predicted as scientists will be able to see where soils reach saturated conditions.

In other applications, people working on global water or energy budgets have to parameterize the land surface in terms of how wet or dry it is. That’s the big advantage of SMAP’s relatively new data sets.  Any time you’re running a regional climate model you have to parameterize what the soil moisture is in order to partition surface heat flux into sensible and latent heat flux. If there’s a lot of available water, it’s weighted more toward evaporation and less toward sensible heat flux.  In areas where there’s little available water and low evaporation, you get high surface temperatures and sensible heat flux.  So SMAP will be important for model parameterization as we haven’t had a good global data set for soil moisture until now.

Dirt with a Root Sticking Out of it

In situ sensors show how much water is lost from the root zone and what is still left.

What can in situ sensors do that SMAP can’t?

In irrigated agriculture, farmers need to know when and how much to irrigate.  In situ sensors give them this information by showing how much water was lost from the root zone and what is still left.  SMAP is unable to tell you what’s down in the root zone; it only reaches to 5 cm.    Additionally, 1 km resolution is larger than most irrigation blocks. These factors mean that it will be difficult to make irrigation decisions from SMAP alone.

Scientists using in situ sensors are concerned with the soil moisture available in a local area because their time resolution is excellent and they have the ability to resolve what’s happening in particular conditions related to crops or natural systems.  Natural systems are often heterogeneous, meaning there may be adjacent areas with different types of vegetation including trees, shrubs, and grass.  Tree roots may grow deep while grass roots are shallow.  Being able to look over all these different areas without averaging them together, as SMAP does, is critical in some applications.

 What about geotechnical applications?  Literature suggests SMAP output can help predict landslides. It is more likely that it can only see when the soil is generally saturated and generate a warning. But in slopes that are at risk of landslides, in situ monitoring with sensors such as tensiometers to measure positive pore water pressure may be more useful for determining when a slide is imminent.

SMAP, like in situ water content measuring systems, is also limited by the fact that it measures the amount, not the availability, of water. If it measures 23% water content in a certain area, that measurement may not tell us what we want to know. A clay soil at 23% VWC will be close to wilting point while a sand would be above the plant optimal range. SMAP doesn’t measure the energy status of water (water potential), so even if SMAP tells us a field has water content, that water might not be readily available.  Water availability must be determined through a pedo-transfer function or moisture release curve appropriate for a specific soil type (It is possible to overlay SMAP data on soil type data to estimate energy state, but this might not be fine enough resolution to be useful).

Complementary Technology

How do SMAP and in situ instruments work together?  The key is ground truthing in situ soil moisture measurements with SMAP type satellites and vice versa.  Ground-based measurements at specific locations can be matched with satellite information to extrapolate over a field and gain confidence in the small continuous scale alongside the larger infrequent scale.  It’s analogous of a video camera recording one plant continuously while a single shot camera snaps whole-field pictures every day.  With the SMAP “single-shot” we can say, something changed from time A to time B, but we don’t know what happened in the middle (rain event, etc.). In situ measurements will tell us the details of what happened in between each snapshot.  Putting both data sets together and matching trends, we can show correlation and complete the soil moisture picture.  Basically, In situ measurements provide temporally rich information about soil moisture from a postage stamp-sized area of earth’s surface (driven by highly localized conditions), whereas SMAP gives us the ability to monitor broad scale spatiotemporal patterns across all of earth’s surface (driven by synoptic conditions).

Download the “Researcher’s complete guide to soil moisture”—>

Download the “Researcher’s complete guide to water potential”—>

Get more information on applied environmental research in our

Could This Farming Practice Make Food Grown in Fukushima Safe?

March 11, 2015 marks four years since the Fukushima disaster.  What have we learned?

Shortly after the Fukushima disaster, we donated some of our sensors to Dr. Masaru Mizoguchi, a scientist colleague at the University of Tokyo.  He is using the equipment to contrive a more environmentally friendly method to rid rice fields in the villages near Fukushima of the radioactive isotope cesium 137.

Over the last three years, government contractors removed 5 cm of topsoil from fields in order to extract the radioactive isotope. The topsoil has been replaced with sand.  The problem with this method is that it also removes most of the essential soil material, leaving the fields a barren wasteland with little hope of recovery anytime soon.  Topsoil removal may also prove ineffective because wild boars dig up the soil to root for insects and larvae.  This presents a problem in the soil stripping method, as it becomes impossible to determine exactly where the 5 cm boundary exists.  In addition, typhoons and heavy rains erode the sand surface raising safety and stability concerns.

Trash Bags Full of Radioactive Topsoil

Currently, bags full of radioactive topsoil are stacked into pyramids in abandoned fields. An outer black bag layer filled with clean sand is placed around the outside to prevent radiation leakage. The government has promised that these bags will be removed and taken to a repository near the destroyed reactor, but many people don’t believe that will happen as the bags themselves only have a projected life of 3-5 years before they start to degrade. More of these pyramids are being built around Iitate village every day, which is a source of uneasiness for many people that are already cautious about returning.

Dr. Mizoguchi and his colleagues have come up with a new “flooding” method now being tested in smaller fields that can save the topsoil and organic matter while at the same time removing the cesium, making the land usable again within two years.  The new method floods the field and mixes the topsoil with water, leaving the clay particles suspended. Because the cesium binds with the clay, they can drain the water and clay mixture into a pre-dug pit and bury it with a meter of soil after the water has infiltrated.  After one year of using this method, the scientists saw that the cesium levels in the rice had gone down 89%.  And in situ and laboratory instrumentation have shown that two years after cesium removal, the plants’ cesium uptake is negligible, and the food harvested is safe for consumption.

Researcher standing by a sensor station

Dr. Mizoguchi standing by a sensor station containing Decagon sensors

Dr. Mizoguchi is monitoring the surrounding forests with our canopy and soils instrumentation in order to determine if runoff from the wilderness areas will return cesium to the fields and what can be done about it.  He’s figured out a way to network all the instrumentation and upload data directly to the cloud. Still, even if this technology and new methodology work, will people around the world ever feel safe eating food grown near Fukushima?  Dr. Mizoguchi says, “I believe that the soil is recovered scientifically and technically.  However, harmful rumors will remain in the public mind for a long time, even if we show the data that proves safety.  So we must keep showing the facts on Fukushima based on scientific data.”

Resurrection of Fukushima Volunteers using Dr. Mizoguchi's method to rehabilitate small farms

Resurrection of Fukushima volunteers use Dr. Mizoguchi’s method to rehabilitate small farms

Incredibly, each weekend a volunteer organization of retired scientists and university professors use their own money and time to travel out to small village farms.  There they labor to rehabilitate the land using Dr. Mizoguchi’s method.  One of the recipients of this selfless work is a 72-year-old farmer who took his nonagenarian mother and returned to their home to fulfill her heartfelt plea that she could live out her final years outside the shadow of a highrise apartment (see this story in the video above).  We are honored to be a part of this humanitarian effort.

Download the “Researcher’s complete guide to soil moisture”—>

Get more information on applied environmental research in our