Skip to content

Posts tagged ‘weather stations’

The effects of environmental change on carbon cycling across the semi-arid west

Meet Christopher Beltz: G.A. Harris Fellowship winner

Increased nitrogen availability has the potential to alter many ecosystem functions—and is doing so already. This is due to the widespread response of net primary productivity (biomass) and soil respiration to increased nitrogen inputs into the biosphere.

Image of the grass lands with the sun setting

Grass Lands

Increases in nitrogen inputs are responsible for the acidification of soils, streams, and lakes and can affect forest and grassland productivity. Former G.A. Harris Fellowship winner, Christopher Beltz, a PhD student at Yale University, and his research team are examining two major drivers of carbon cycling: water and nitrogen. They want to understand the degree of limitation by both of these factors in the semi-arid ecosystems of the western United States and if that limitation changes by specific function.

Inspired by a mitigation pilot project

Beltz decided to study the effects of increased nitrogen on biomass after learning about the initiation of a major energy development in a sagebrush steppe system which caused declines in a local mule deer herd. He says, “One hypothesis was that the development significantly reduced available winter range forage and also impacted the use of it as the animals moved more quickly through the noisy environment. They wanted to see if the widespread application of fertilizers would potentially offset the loss of biomass and increase the forage quality. In the end, it was clear that the effect of nitrogen fertilization alone would have minimal to no effect. However we also noticed some variability in the results and that this variability seemed to be related to precipitation.”

Image of a scientist watering a field plot

Scientist Watering Field Plot

Beltz thought that if he could control the water in a system in addition to nitrogen, the results might be more consistent. Thus, Beltz and his research team broadcast nitrogen over the soil at three semi-arid grassland and shrubland/sagebrush sites in Colorado and Wyoming. He says, “The three sites essentially have a similar species list, annual precipitation, and annual temperature. However, temperature increases as you go south, and there are some differences in seasonality. The shrublands in the far north are the driest in the late summer which is typical of shrublands, where you see a large amount of precipitation occurring in the spring with a deficit in the summer. Larger taproots are beneficial in this system because they can access deeper water reservoirs.”

Measuring soil moisture improves understanding

The team used METER all-in-one weather stations, soil moisture sensors, and data loggers to monitor site conditions (i.e., precipitation, air temperature, soil moisture, and soil temperature) with high temporal resolution. Beltz explains, “We monitored soil moisture to understand whether our treatments were having any effect. We needed to know if the treatments actually altered the soil water conditions. With soil sensors in the ground, we could monitor that. We also monitored precipitation at the site level because of the fine scale spatial heterogeneity of precipitation in these systems. We weren’t confident we could obtain this with interpolation or modeling; we wanted site-specific values.”

Beltz uses this and other data to understand the interactive effects of nitrogen and water and also changes in water and nitrogen concentrations. He says, “We do a classic full-factorial manipulation outdoors. We perform the exact same manipulations with the same timing at each site. We measure a whole suite of variables that range from ecosystem structure to ecosystem function. This includes soil respiration, plant community, soil microbial communities (fungal and bacterial) using next-generation sequencing. We look at pools of soil carbon, and we do some fractionation so we can get at more labile and recalcitrant carbon compounds.”

METER weather station, ZL6 data logger, and soil moisture sensors

METER Weather Station, ZL6 Data Logger, and Soil Moisture Sensors to Receive and Process Data

Beltz says that monitoring soil moisture at multiple depths is important. “Our soil samples come from the same depths as the sensors so we can differentiate depth when we look at changes in bacterial or fungal composition. We then try to tie that to temperature and moisture. In 2018, we added an additional set of soil moisture sensors in our water treatment so we could start to quantify the effect in the soil depth that those water treatments were having. This helped explain a lot of what we were seeing.”

Nitrogen or water: which is the driver?

Beltz says the analyses are ongoing, but what they’ve learned so far is that an application of water equivalent to 12 millimeters precipitation penetrates to 10 centimeters of depth, and the effect of that application lasts three to seven days at all of their sites. He says, “Last year, we had an unseasonably large amount of precipitation at our northerly site. So for most of the season, the water treatments and the controls were identical in terms of water availability. That was a very helpful context for us because we started to see things that did not match the expected patterns.”

Looking at the big picture, he adds, “What’s come out of this is not what anybody expected. One major finding, at least in the initial analyses at two of our sites, is that it’s really the combined treatment of increased nitrogen and water that has the effect. This is not necessarily surprising in some ways, however it is the widespread lack of response of any other treatment combination that is extremely interesting.”

What it all means

Beltz sums up the implications of his research like this: “We know water availability and precipitation will shift globally due to climate change, as well as nitrogen deposition and availability. Our research is trying to tease apart the effects of two factors, at least within the western United States, that we know are likely to cause changes to the structure and function of dryland ecosystems. As we start to look at carbon balance or shifts in function or species competition of plant communities, we are finding out that it’s the combined effect of increased nitrogen and water that will cause a more major change as opposed to just one or the other. It’s important that we integrate that combination into models that often do not account for both of these factors.”

Beltz says in the future he’s interested in continuing his work in the carbon/nitrogen cycle world, and he wants to look at integrating nitrogen and water into carbon balance modeling efforts.

You can read more about the first study mentioned, regarding nitrogen fertilization in the sagebrush steppe, which was published in PloS ONE: https://doi.org/10.1371/journal.pone.0206563

Find out about his research here: christopherbeltz.com or via Twitter @BeltzEcology

Now accepting applications: 2019 G. A. Harris Fellowship

The Grant A. Harris Fellowship provides $60,000 worth of METER research instrumentation (six $10,000 awards) to graduate students studying any aspect of agricultural, environmental, or geotechnical science.

Apply now

Learn more

See ATMOS 41 weather station performance data

Learn more about measuring soil moisture. Download “The researcher’s complete guide to soil moisture“.

To understand how soil moisture and soil water potential work together, download “The researcher’s complete guide to water potential.”

Why mesonets make weather prediction more accurate

The staggering cost of Montana’s “flash drought”

Some people figured it was climate change. One statistician said it was a part of a cyclical trend for poor crop years. Whatever the cause, the 2017 flash drought that parched the entire state of Montana and most of South Dakota, severely impacted the profitability of ranchers and farmers. In western Montana, fires burned some of the largest acreages in recent history. It resulted in one of the biggest wildfire incident reports (over one-million acres) and caused virtually 100% crop loss in northeastern Montana. The U.S. Dept. of Agriculture estimated the crop loss to be in the hundreds of millions of dollars, and one question was on everybody’s mind—why did no one see it coming?

Montana drought status chart

Figure 1. Montana drought conditions August 2017 (Source: Montana State Library website: https://mslservices.mt.gov/Geographic_Information/Maps/drought/)

Getting the right weather data

The 2017 Montana Dept. of Natural Resources and Conservation spring drought report indicated plenty of water: “By the end of the month, almost all drought concern was removed from the state, with the exception of Wibaux and Fallon Counties….As of May 9, 2017, Montana was 98.45% drought free.” But in late May, an abrupt shift in weather conditions led to one of the hottest, driest summers on record.

The problem, says Kevin Hyde, Montana State Mesonet Coordinator, lies not only in the need for more weather data but in obtaining the right kind of data. He says, “One of the reasons drought was missed was because we’re still thinking you measure drought by snowpack and how much water is in the river, which is really great if you’ve got water rights. But we’ve got a lot of dryland out there.”

In addition to weather monitoring, Hyde is a big proponent of adding soil moisture and NDVI measurements to each of the Montana Mesonet stations he oversees. He says, “The conventional weather station only measures atmospheric conditions. But ultimately, to make any decisions, we’ve got to know not just how much water comes into the system, but how much goes into the soil. And even that’s not enough…because what we really need to know is how the water situation is going to affect plants.”

Hyde says more data are needed to warn growers and ranchers about upcoming weather risks. He points to the fact that increasing evapotranspiration got missed leading up to the summer of 2017. “We realized that if we were looking carefully at reference ET, we might have seen it about a month earlier. What would people have done? They would have changed their calf purchases. They would have figured out what kind of forage they needed to buy. These are the types of decisions people can make if they know the information sooner.”

Was the drought over? Soil moisture illuminates the bigger picture

Heavy rains came mid-September of 2017, which led some people to believe the drought was over. However, changes in soil moisture told a different story. Very little of the rain made it into the soil. “At the Havre, MT station you can see we had some heavy precipitation events. Then we had early October snows. So people expected good soil water recharge. But at the end of the day, we didn’t get it. On Sept.15th, soil moisture sensors showed a big soil moisture response at the surface but only a marginal response at 8 inches.” The melt of early October snows onto the soil, still damp from the September rain, drained to 20 inches or more. But as the snowmelt dissipated, there was minimal net gain going into the winter.

Soil moisture chart for Montana

Figure 2. Soil moisture traces at the Havre, MT weather station

Predictive models need more coverage to be effective

Typically in the U.S., the National Weather Service (a division of NOAA) puts out a network of weather monitoring stations spaced out across the country, and that data gets fed into forward-looking models that help predict the weather. Dr. Doug Cobos, research scientist at METER says, “What people are finding out is that putting in a sparse network of very expensive systems has done really well. It’s been a good thing. But the spatial gaps in those networks are a problem, especially for agriculture producers and ranchers. They need to know what’s happening where they are.”

Hyde agrees, adding that we need better predictive tools that help growers and ranchers make practical decisions based on data rather than guessing. “January 1st is when the decision has to be made—do I buy cows? Do I sell cows? Do I need more pasture? But many predictions start on April 1st. As one rancher puts it, ‘We don’t bother with Las Vegas. We sit around the dining room table at the beginning of the year and put a million dollars on one shot.’”

Mesonets improve spatial distribution

Mesonets present a practical solution for the need to fill in data gaps between large, complex weather stations. The Montana Mesonet currently has 57 stations interspersed throughout the state, and through partnerships with both the public and private sector, they’re adding more stations every year.

Map of mesonet weather stations

Figure 3. Map of MT Mesonet weather stations (source: http://climate.umt.edu/mesonet/)

At each location, the Montana Mesonet team installs METER all-in-one weather stations, soil moisture sensors, NDVI sensors and data loggers that integrate with ZENTRA Cloud: an easy-to-use web software that seamlessly integrates into third-party applications through an API. He says the system enables better spatial distribution and reliability. “When we were deciding on equipment we asked ourselves: What kind of technology should we use? It had to provide high data integrity. It had to be easy to deploy and maintain. And it had to be cost effective. There’s not a lot of people in that sector. METER systems are low profile, they’re affordable, and the reliability is there. I look at some other mesonets, and they cannot afford to build out further because they are relying on large, complex, expensive systems. That’s where the METER system comes into play.”

Montana mesonet weather station setup

Figure 4. Montana Mesonet station setup (Photo credit: Kevin Hyde)

Betting on the future

The Mesonet team and its partners are excited to see how their data will mesh with the available predictive tools to be the most useful and practical for growers and ranchers throughout the state, and they realize that there is still much work to do. “It’s not enough just to get the instrumentation out there. The overall crux is: how do we build the information network, and how do we build a relationship with the producers so that we can have an iterative and interactive conversation?” says Hyde. “We know there needs to be an education in how to use and interpret the data. For example: what is NDVI, and what can we learn from it? A lot of what we need to do is translate science into practical terms.” But he adds that it doesn’t need to be perfect. “What the farmers have said to us is, ‘We don’t need exact numbers. We’re gamblers. Give us probability. Teach us what it means, and we’ll make the decision.’”

Find more information on the Montana Mesonet here and in their newsletter.

See weather sensor performance data for the ATMOS 41 weather station.

Explore which weather station is right for you.

Download the “Researcher’s complete guide to soil moisture”—>

Top Five Blog Posts in 2017

In case you missed them the first time around, here are the most popular Environmental Biophysics.org blog posts in 2017.

Soil Moisture Sensors: Why TDR vs. Capacitance May Be Missing the Point

Researcher holding a soil sensor in front of a field

Soil moisture sensor

Time Domain Reflectometry (TDR) vs. capacitance is a common question for scientists who want to measure volumetric water content (VWC) of soil, but is it the right question?  Dr. Colin S. Campbell, soil scientist, explains some of the history and technology behind TDR vs. capacitance and the most important questions scientists need to ask before investing in a sensor system. Read more

Get More From your NDVI Sensor

Looking up at tree branches from the ground

Modern technology has made it possible to sample Normalized Difference Vegetation Index (NDVI) across a range of scales both in space and in time, from satellites sampling the entire earth’s surface to handheld small sensors that measure individual plants or even leaves.  Read more

Improved Methods Save Money in Future Borehole Thermal Energy Storage Design

Image of a city with many buildings

Globally, the gap between the energy production and consumption is growing wider. To promote sustainability, University of California San Diego PhD candidate and ASCE GI Sustainability in Geotechnical Engineering committee member, Tugce Baser, Dr. John McCartney, Associate Professor, and their research team, Dr. Ning Lu, Professor at Colorado School of Mines and Dr. Yi Dong, Postdoctoral Researcher at Colorado School of Mines, are working on improving methods for borehole thermal energy storage (BTES), a system which stores solar heat in the soil during the summer months for reuse in homes during the winter. Read more

New Weather Station Technology in Africa

Happy students gathered around an ATMOS 41 weather station

Weather data, used for flight safety, disaster relief, crop and property insurance, and emergency services, contributes over $30 billion in direct value to U.S. consumers annually. Since the 1990’s in Africa, however, there’s been a consistent decline in the availability of weather observations. Read more

Electrical Conductivity of Soil as a Predictor of Plant Response

Corn stalks looking up at the sky from the ground

Plants require nutrients to grow, and if we fail to supply the proper nutrients in the proper concentrations, plant function is affected. Fertilizer in too high concentration can also affect plant function, and sometimes is fatal.  Read more

And our three most popular blogs of all time:

Estimating Relative Humidity in Soil: How to Stop Doing it Wrong

Image of a tree in the desert

Estimating the relative humidity in soil?  Most people do it wrong…every time.  Dr. Gaylon S. Campbell shares a lesson on how to correctly estimate soil relative humidity from his new book, Soil Physics with Python, which he recently co-authored with Dr. Marco Bittelli.  Read more

How to Measure Water Potential

Plants sprouting out of the sand

In the conclusion of our three-part water potential series, we discuss how to measure water potential—different methods, their strengths, and their limitations. Read more

Do the Standards for Field Capacity and Permanent Wilting Point Need to be Reexamined?

Image of rolling fields in front of mountains

We were inspired by this Freakonomics podcast, which highlights the bookThis Idea Must Die: Scientific Problems that are Blocking Progress, to come up with our own answers to the question:  Which scientific ideas are ready for retirement?  We asked scientist, Dr. Gaylon S. Campbell, which scientific idea he thinks impedes progress.  Here’s what he had to say about the standards for field capacity and permanent wilting point. Read more

Get info on applied environmental research in our

See weather sensor performance data for the ATMOS 41 weather station.

Explore which weather station is right for you.

Download the “Researcher’s complete guide to soil moisture”—>

New Weather Station Technology in Africa (Part 2)

Weather data improve the lives of many people. But, there are still parts of the globe, such as Africa, where weather monitoring doesn’t exist (see part 1). John Selker and his partners intend to remedy the problem through the Trans African Hydro Meteorological Observatory (TAHMO).  Below are some challenges they face.

Researcher holding an ATMOS 41 weather station in Africa

TAHMO aims to deploy 20,000 weather stations across the continent of Africa in order to fill a hole that exists in global climate data.

Big Data, Big Governments, and Big Unknowns

Going from an absence of data to the goal of 20,000 all-in-one weather stations offers hope for positive changes. However, Selker is still cautious. “Unintended consequences are richly expressed in the history of Africa, and we worry about that a lot. It’s an interesting socio-technical problem.”  This is why Selker and others at TAHMO are asking how they can bring this technology to Africa in a way that fits with their cultures, independence, and the autonomy they want to maintain. 

TAHMO works with the government in each country stations are deployed in; negotiating agreements and making sure the desires of each recipient country are met. Even with agreements in place, the officials in each country will do what is in the best interest of the people: a gamble in countries where corruption is a factor which must be addressed. Selker illustrates this point by recalling an instance in 1985 when he witnessed a corrupt government official take an African farmer’s land because the value had increased due to a farm-scale water development project.

Most TAHMO weather stations are hosted and maintained by a local school, making it available as an education tool for teachers to use to teach about climate and weather. Data from TAHMO are freely available to the government in the country where the weather station is hosted, researchers who directly request data, and to the school hosting and maintaining the weather station. Commercial organizations will be able to purchase the data, and the profits will be used to maintain and expand the infrastructure of TAHMO.

Researchers standing in front of a sign

Selker says it’s all about collaboration.

Terrorism, Data, and Open Doors

“When I wanted to go out and put in weather stations, my wife said, ‘No, you will not go to Chad.’ … because it is Boko Haram central,” Selker says.

The Boko Haram— a terrorist organization that has pledged allegiance to ISIS— creates an uncommon hurdle. Currently, the Boko Haram is most active in Nigeria, but has made attacks in Chad, Cameroon, and Niger.

Selker also mentioned similar issues with ISIS, “When ISIS came through Mali, the first thing they did is destroy all the weather stations. So they have no weather data right now in Mali.” Acknowledging the need for security, he adds, “we’re  completing the installation of  eight stations [in Mali] in April.”

“We have good contacts [in Nigeria] and they’re working hard to get permission to put up stations right now in that area. We’ve shipped 15 stations which are ready to install. With these areas we can’t go visit, it’s all about collaboration. It’s about partners and people you know. We have a partnership with a tremendous group of Africans who are really the leading edge of this whole thing.”

Excited students running towards the camera

Most TAHMO weather stations are hosted and maintained by a local school.

A Hopeful Future

Despite the challenges of getting this large-scale research network off the ground, Selker and his group remain hopeful.  About his weather data he says, “It’s not glamorous stuff, you won’t see it on the cover of magazines, but these are the underpinnings of a successful society.”

Selker optimistically adds, “We are in a time of incredible opportunity.”

Learn more about TAHMO

Next Week:  Read an interview with Dr. John Selker on his thoughts about TAHMO.

See weather station performance data for the ATMOS 41.

Explore which weather monitoring system is right for you.

Download the “Researcher’s complete guide to soil moisture”—>