# Soil moisture: ECH20 vs. TEROS, which is better?

See how the new TEROS soil moisture sensor line compares with METER’s trusted ECH20 sensor line.

## Volumetric water content—defined

To evaluate the performance of any water content sensor, you need to first understand its technology. In order to do this, it’s necessary to understand how volumetric water content (VWC) is measured. Volumetric water content is the volume of water divided by the volume of soil (Equation 1) which gives the percentage of water in a soil sample.

So, for instance, if a volume of soil (Figure 1) was made up the following constituents: 50% soil minerals, 35% water, and 15% air, that soil would have a 35% volumetric water content.

The percentage of water by mass (wm) can be measured directly using the gravimetric method, which involves subtracting the oven-dry soil mass (md) from the mass of moist soil (giving the mass of water, mw) and dividing by md (Equation 2).

The resulting gravimetric water content can be converted to volumetric by multiplying by the dry bulk density of the soil (b) (Equation 3).

## Why capacitance technology works

Volumetric water content can also be measured indirectly: meaning a parameter related to VWC is measured, and a calibration is used to convert that amount to VWC. All METER soil moisture sensors use an indirect method called capacitance technology. In simple terms, capacitance technology uses two metal electrodes (probes or needles) to measure the charge-storing capacity (or apparent dielectric permittivity) of whatever is between them.

Table 1 illustrates that every common soil constituent has a different charge-storing capacity. In a soil, the volume of most of these constituents will stay constant over time, but the volume of air and water will fluctuate.

Since air stores almost no charge and water stores a large charge, it is possible to measure the change in the charge-storing ability of a soil and relate it to the amount of water (or VWC) in that soil. (For a more detailed explanation of capacitance technology watch our Soil Moisture: methods/applications webinar.

## Capacitance today is highly accurate

When capacitance technology was first used to measure soil moisture in the 1970s, scientists soon realized that how quickly the electromagnetic field was charged and discharged was critical to success. Low frequencies led to large soil salinity effects on the readings. Over time, this new understanding, combined with advances in the speed of electronics, enabled the original capacitance approach to be adjusted for success. Modern capacitance sensors, such as METER sensors, use high frequencies (70 MHz) to minimize effects of soil salinity on readings.

The circuitry in capacitance sensors can be designed to resolve extremely small changes in volumetric water content, so much so, that NASA used METER’s capacitance technology to measure water content on Mars. Capacitance soil moisture sensors are easy to install and tend to have low power requirements. They may last for years in the field powered by a small battery pack in a data logger.

## TEROS and ECH20: same trusted technology

Both TEROS and ECH20 soil moisture sensors use the same trusted, high-frequency (70 MHz) capacitance technology that is published in thousands of peer-reviewed papers. Figure 3 shows the calibration data for the ECH20 5TE and TEROS 12.