During a recent semester at Washington State University, a film crew recorded all of the lectures given in the Environmental Biophysics course. The videos from each Environmental Biophysics lecture are posted here for your viewing and educational pleasure.
Dr. Khot and his postdoc, Dr. Jianfeng Zhou, are using leaf wetness sensors to determine if and how long water is present on cherry tree canopies after a rain event. Dr. Khot hopes that data from these sensors will help growers decide whether or not it makes sense to fly helicopters in order to dry the canopies.
Dr. John Selker, hydrologist at Oregon State University and one of the scientists behind the Trans African Hydro and Meteorological Observatory (TAHMO) project, gives his perspective on the future of sensor technology.
Michelle Newcomer, a PhD candidate at UC Berkeley, (previously at San Francisco State University), recently published research using rain gauges, soil moisture, and water potential sensors to determine if low impact design (LID) structures such as rain gardens and infiltration trenches are an effective means of infiltrating and storing rainwater in dry climates instead of letting it run off into the ocean.
Looking up at a tree canopy
Get more information on applied environmental research in our
In the conclusion of our three part series on the reforestation of Banguet province in the Philippines, we asked Dr. Anthony S. Davis, Tom Alberg and Judi Beck Chair in Natural Resources at the University of Idaho, Loreca Stauber, one of the visionaries behind the project, and Kea Woodruff, former U of I Nursery Production and Logistics Associate, now at Harvard University, to explain some challenges associated with teaching reforestation to different cultures.
Even with increased environmental awareness, we’re still losing almost thirty million acres of forest globally every year.
What are some of the cultural challenges?
Anthony: As I spend more and more time looking at international forests, I realize that we’re losing forests at a phenomenal rate. Even with all of our awareness about where we get supplies, where trees come from, where wood comes from, and where paper comes from, we’re still losing almost thirty million acres of forest globally every year. That’s terrifying to me. What’s even worse is that most of it comes from countries that don’t have environmental controls. They don’t have systems in place that keep them from cutting down all the trees. Often, when we cut trees down for forestry, we replant. But, when you start to work in countries where that’s not valued or not part of the culture or the system, then a huge problem emerges.
How do you teach people to grow trees that can survive in their native terrain?
Anthony: There isn’t a lot of knowledge globally about how to grow high-quality tree seedlings. I’ve gotten really interested in the question of how to take a tree seedling which is grown in a nursery, where it essentially has all of the water and all of the nutrients it could possibly ask for, and get it into a condition where it’s likely to survive somewhere extremely harsh: with limited nutrients and water. How do you get it to the point where it’s able to overcome those challenges?
There are two ways to look at that. One is to get more water to that seedling after it’s planted. The other is to make sure that the seedling you’re planting has its best possible chance of developing a root system that can access water that might not normally be available in those six inches where healthy roots are located when it’s first planted. Based on work that’s be done here at the University of Idaho in graduate student projects over the years, we found that if you can grow a seedling in a healthy manner in the nursery, it’s more likely to grow roots or access water that previously they might not have been able to access.
Working on one of the water tanks that will supply water to the Benguet nursery in the Philippines. The project is proceeding nicely after a series of setbacks: a destructive typhoon, slides that had to be cleared, 2 deaths, 1 funeral, and electrical power interruptions.
What challenges the plants after they leave the nursery?
Anthony: If that seedling can get roots down and access water, it starts to grow. The beauty of reforestation, in general, is that it’s very simple; it can be very easy to get trees to grow. However, what often happens is you have a social element that overlaps the biological element. Some of it could be a lack of education, where people don’t understand that a large amount of foliage or leaves on a tree means that you need more water. You think about that image of success: people want to plant the biggest tree possible. That might work in a yard, but it really doesn’t work in a reforestation situation.
What are the challenges of establishing a nursery in a place like the Philippines?
Kea: In the place like the Philippines where resources aren’t necessarily as available, it becomes a huge challenge just finding the right kind of media or container. Also, there’s a decentralization of the knowledge resource itself. While we were there, we had the opportunity to meet with different government agencies, and there are definitely people who know a lot about the species that are available and how to grow them, but in terms of that information being disseminated and widely available to the public, that’s a challenge. The techniques that will be needed to actually produce a seedling resource need to be addressed.
Loreca: The basic thing is a good nursery. That has been a problem. In the past, the government, in an effort to green the Philippines, has given seedlings, but oftentimes, these seedlings are so poor in quality that they don’t survive in out planting.
Coffee beans will thrive in the tropical Philippines.
How can you help other cultures to succeed at reforestation?
Anthony: During some work I was doing in the Middle East, in Lebanon, we found that communicating to people what a high-quality seedling became really important. You teach them about quality, defining it in terms of how much water a plant needs to survive, or how a plant has to grow in order to colonize a site. We had a lot of success with the project there, getting people to understand that there was a problem in only looking at above ground information in terms of what makes a high-quality seedling. Really, when the roots are what’s driving survival, they’re looking at the wrong part of the picture.
How do you teach people to think beyond the nursery?
Anthony: Our work in Lebanon coincided with a project in Haiti. In Haiti, we had a former student who had been here at the University of Idaho who asked for help starting a nursery. These same conversations occurred: what is a healthy seedling, what is likely to survive, where do you get your seed, how long do you grow it for, when do you plant it? We were able to have conversations around all of the elements that go into growing trees.
I remember clearly the “aha” moment where this young woman said, “We’ve been doing it wrong! We’ve always focused on growing as many seedlings as possible, and we haven’t worried about quality.”
See it live
Watch a video where Anthony talks about his work.
You can learn more about the reforestation programs that the University of Idaho nursery is involved with here.
Get more information on applied environmental research in our
In one of the first agroforestry efforts in mountainous terrain, Moscow, Idaho community leader Loreca Stauber, Dr. Anthony S. Davis, Tom Alberg and Judi Beck Chair in Natural Resources at the University of Idaho, and their partners have initiated a program where U of I students travel overseas to work with farmers of Banguet province in the Philippines to develop the skills needed to grow high quality tree seedlings. Local vegetable farmers have historically terraced the mountains that have been forested so they could grow monoculture crops, causing serious erosion (read about it here). The land has degraded so much that the Philippine government has stepped in: warning farmers to begin conservation techniques, or they will take away the land and manage it themselves.
Building a local nursery in Benguet.
Inspiring Students to Look at the Big Picture
One of the steps in helping local farmers to solve this problem is to create a local nursery where they can start growing native plants and trees. Fortunately, the University of Idaho has operated a tree nursery for over one hundred years, and they understand how to grow trees. Dr. Davis specializes in setting up native nurseries for growing native plants all over the world. He says, “I want our students to be exposed to this because we’re graduating students who should be problem solvers, who should be able to look at the biggest challenges and contribute their own ideas towards resolving those challenges.”
Loreca Stauber adds, “We are part of the world and the world is part of us. The students can do more than just get their degree and find a job. Anthony and Kea, when they do this, inspire students to look at a bigger world than they are currently living in.”
Training Students to Understand Native Terrain and Resources
Davis says a good plan needs to take local conditions into account: “The principles of growing trees are actually universal. It doesn’t matter whether you’re in Haiti, Lebanon, Idaho, or in the Philippines. Those principles are the same and they’re readily transferable. It’s how you adapt them to unique local situations that makes a difference.”
“It’s not really about the best way to grow a plant in a greenhouse environment; It’s about the best way to grow a plant that will also survive on its outplanting site.”
Kea Woodruff, former U of I Nursery Production and Logistics Associate, now at Harvard University, says they train the students who go overseas on the “target plant” concept: designing a growing regime based on what the plant is going to need in its future home. She says, “It’s not really about the best way to grow a plant in a greenhouse environment; It’s about the best way to grow a plant that will also survive on its outplanting site. Determining what the outplanting site is and what each species will need to survive on that outplanting site is what determines greenhouse operations.”
Dr. Davis says you need to consider native resources when doing these types of projects. “There could be plumbing there, but there’s no guarantee that when you turn the system on, the tap water will come out. That depends on the seasonality of the rains. It’s part of why we wanted the project partners (the farmers) to have data loggers: so we could look at the data together and get a better feel for when water is most abundant and when it’s most scarce, so it can be stored for later use.”
Overcoming Native Challenges with Remote Data
Decagon (now METER) donated data loggers to the program so that Dr. Davis and other people on the team could look at data with the farmers in the Philippines and advise them when to irrigate. Davis says, “One of the things that’s most important in trying to set up a very remote nursery and manage the production in that nursery from approximately four flights, twelve hours, and twelve time zones away, is knowing what’s going on. There are things that are really easy to ask, like could you send me a picture every Wednesday and Saturday of the nursery, or could you measure the height and the diameter of the seedlings? What’s much harder to tell is how much water is coming in, or what the temperature was during the day or night, because those require people to be monitoring things at a greater frequency than is often possible. If we know how much water is coming into the nursery from rainfall, we can build collection systems so that we can manage where that water goes later on.”
Managing data for both the short and long term is critical, says Davis, because it’s often whether there was rainfall in the predicted amount, and at the right time, that determines whether a seedling establishes or not.
Acknowledgements: The SEAGAA agroforestry project in Benguet is agro and forest; the farmers received a grant from the Rufford Foundation based in the UK to build a greenhouse and much of the water catchment system and auxiliary structure that go with a nursery facility. They also received a sizable grant from the Philippine government to launch mushroom growing as a necessary complement to help support long-term agroforestry. The project is beyond reforestation – it is the growing of trees, shrubs, ground cover, the restoring of watersheds, creating livelihoods, the rebuilding of soil fertility and integrity, the revival of springs which have vanished with the removal of perennial flora, and the restoring biodiversity to bring back the natural checks and balances of a natural ecosystem.
In the mountainous Benguet province of the Philippines, farmers grow up to three crops of vegetables a year. Their mountain vegetable farms exist at the expense of original forest cover, causing tremendous erosion difficulties. To counteract erosion and preserve the watershed as well as promote reforestation, the Philippine government issued a mandate: farmers must find alternatives that restore the watershed or lose their land.
Rice terraces in the Philippines
An Agroforestry Alternative
Loreca Stauber is no scientist, but she loves Benguet, and a letter from her friend, a scientist living in the Philippines, inspired her with the vision of teaching farmers to reforest the mountains and grow vegetables amongst the trees.
Her friend writes, “We envision mountain farms as forest ecosystems whose primary social responsibility to the communities around and below is to be part of responsible watersheds that court, catch, store and gradually share water. We see mountain farms that are not prone to soil erosion or leaching: cultivated with minimal chemical inputs and tillage that will allow the natural buildup of biomass, organic matter, helpful organisms and fauna. We think of forest ecosystems that may not make millionaires of its farmers for one generation and heavy debtors even before the next. Rather, we envision forest farm ecosystems that are self-sufficient and self-sustaining. We are working on demonstrating forest ecosystems that can substitute for monocrop vegetable farms that deplete and leach the soil, pollute watersheds and are self-destructing.”
Realizing the problem in the Philippines could be solved by reforestation, Loreca emailed Dr. Anthony S. Davis, Tom Alberg and Judi Beck Chair in Natural Resources in the University of Idaho’s Department of Forest, Rangeland, and Fire Sciences. The U of I operates a 100-year-old nursery specializing in growing hardy tree seedlings. Dr. Davis recalls, “The email she sent me said, “I think you should do something about this,” and I thought, “Actually I agree. I think we should do something about this. So we began to screen the idea, asking: are there partners? Is it a good idea? Does it fit with this little thing that we do really well, which is essentially teaching people how to grow tree seedlings, and is there an educational component that’s valuable for our students? When those check boxes lined up, then it was a matter of taking advantage of that opportunity and seeing where it could go.”
Forested mountains in the Philippines
Determining What Already Works
Together, they and other partners started a program in which U of I students went overseas to teach the people of Benguet how to grow trees, with the goal of moving the land toward agroforestry. They wanted to grow a forest ecosystem (trees, shrubs, and ground cover) along with annual crops. Kea Woodruff, former U of I Nursery Production and Logistics Associate, now at Harvard University, traveled to the Philippines with an interdisciplinary team of undergraduate and graduate students to look at what agroforestry projects were already working and to conduct a needs assessment. She says, “I saw a wide variety of landscapes in the areas that we were. One woman decided on her own that she was going to practice agroforestry, and people come and view her land as a demonstration site. It has mature bamboo, coffee trees, and mature Benguet pine. It really looks like what you would expect the native forest to look in an area like the Philippines.”
Kea said there were also intermediate sites where there are Benguet pines and some coffee with row crops blended in, such as strawberries and squash. She adds, “There’s clearly great potential to grow different species on these lands if we can help figure out the best way to use the resources that are available.”
Next week: Learn how partners in the project have been able to use native resources in the quest to reforest erosion-plagued Benguet.
Take our Soil Moisture Master Class
Six short videos teach you everything you need to know about soil water content and soil water potential—and why you should measure them together. Plus, master the basics of soil hydraulic conductivity.
In contrast to the majority of the literature on soil physics, this text focuses on solving, not deriving, differential equations for transport. Numerical methods convert differential equations into algebraic equations, which can be solved using conventional methods of linear algebra. Here, Dr. Campbell interviews about this update to his classic book Soil Physics with BASIC.
Why did you write the first book, Soil Physics with BASIC?
Soil physics classes were always frustrating for me because you would spend time writing fancy equations on the chalkboard, and in the end, you couldn’t do anything with them. You couldn’t solve any of the problems because, even though they involved difficult mathematics, the math was still so simplified that it didn’t apply to anything that went on in nature.
When I taught my first graduate soil physics class, I determined that we were going to be able to do something by the time we finished. Luckily, in the mid-1970s, personal computers were being developed, and I realized this was the answer to my problem. Numerical methods could solve any problem with any geometry in it. It wasn’t limited to problems that fit the assumptions needed to derive a complex differential equation. I could write computer programs that simplified the mathematics for the students and teach them how to solve those problems using numerical methods. By the end of the semester, my students would have a set of tools that they could use to solve problems in the real world.
Did this book come from class notes or some other source?
I wrote two textbooks and they both came the same way. When I first started teaching, I had a textbook that was inadequate, so I began writing notes of my own and handing them out to the students. After two years, I turned these notes into An Introduction toEnvironmental Biophysics. Soil Physics with BASIC came about by the same process, but I enlisted the help of my daughter, Julia, to type it up. It was in the early days of word processing so entering equations was quite difficult. It all went well for her until chapter eight, which was a nightmare of greek symbols. After she finished slogging for days through the material, we somehow lost the chapter. She retyped it, and we lost it again, making her type it three times! We didn’t have spreadsheets then either, so the figures were all hand-drawn by my daughter, Karine.
Marco [Bitteli] has added two and three-dimensional flow problems, so you can model whole landscapes and water behavior in an entire terrain.
What does Soil Physics with Python add to the conversation?
First, it updates the programming language. BASIC was a language invented at Dartmouth and intended to be a simple teaching language. It was never supposed to be a scientific computer language. Python (13:26.) is a newer language, and there are many open source programs for it, making it a better language to use for science.
Secondly, the old book had one-dimensional flow problems in it for the most part, but Marco [Bitteli] has added two and three-dimensional flow problems, so you can model whole landscapes and water behavior in an entire terrain.
In addition, Dr. Bitteli describes the process and analysis of soil treated as fractals as well as soil image analysis. There are a lot of extensions and updates that weren’t in the original book.
Will it be accessible across all disciplines?
To some extent, different disciplines speak different languages. A soil physicist talks about water potential, and a geotechnical engineer talks about soil suction. Thus, there may be some translation of discipline-specific terms, but it’s intended to be a book that people in the plant sciences can use along with people in the soil sciences.
Dr. Marco Bitteli earned his PhD at Washington State University and was Dr. Campbell’s former student. This book is a product of their continued collaboration. Dr. BBitteli is now a professor at University of Bologna, the oldest university in operation in the world. Soil Physics with Python is available at Amazon.com.