Skip to content

Posts from the ‘Ecology’ Category

Soil Moisture 301—Hydraulic Conductivity Why you need it. How to measure it.

New Live Webinar

Hydraulic conductivity, or the ability of a soil to transmit water, is critical to understanding the complete water balance.

Researcher running hand over wheat
Soil hydraulic conductivity impacts almost every soil application.

In fact, if you’re trying to model the fate of water in your system and simply estimating parameters like conductivity, you could get orders of magnitude errors in your projections. It would be like searching in the dark for a moving target. If you want to understand how water will move across and within your soil system, you need to understand hydraulic conductivity because it governs water flow.

Get the complete soil picture

Hydraulic conductivity impacts almost every soil application: crop production, irrigation, drainage, hydrology in both urban and native lands, landfill performance, stormwater system design, aquifer recharge, runoff during flooding, soil erosion, climate models, and even soil health. In this 20-minute webinar, METER research scientist, Leo Rivera discusses how to better understand water movement through soil. Discover:

  • Saturated and unsaturated hydraulic conductivity—What are they?
  • Why you need to measure hydraulic conductivity
  • Measurement methods for the lab and the field
  • What hydraulic conductivity can tell you about the fate of water in your system

Date: August 20, 2019 at 9:00 am – 10:00 am Pacific Time

See the live webinar

REGISTER

Can’t wait for the webinar? See a comparison of common measurement methods, and decide which soil hydraulic conductivity method is right for your application. Read the article.

Download the “Researcher’s complete guide to water potential”—>

Download the “Researcher’s complete guide to soil moisture”—>

Freshwater shrimp grown in Korean rice paddy boost grower income

In South Korea, falling rice prices threaten the livelihood of many rice growers. Recently our Korean reps told us about an experiment performed in Jinju city, Gyeongsangnam-do, South Korea, by GNARES (Gyeongsangnam-do Agricultural Research & Extension Services) to increase grower income through simultaneous freshwater shrimp, lotus plant, and rice cultivation in a paddy field.

Image of a researcher working on freshwater shrimp growth

RT-1 water temperature sensors were installed along with METER data loggers to monitor the water temperature, ensuring it was optimal for shrimp growth. Through this experiment, GNARES found that environmental conditions were good for cultivating freshwater shrimp in this area. 

Graphs show the plantations are good for cultivating freshwater shrimp

Download the “Researcher’s complete guide to water potential”—>

Download the “Researcher’s complete guide to soil moisture”—>

Engineers Without Borders alleviates Panamanian village water security issues

Engineers Without Borders (EWB) at Washington State University in Pullman, WA has partnered with a small indigenous village located in the Comarca Ngäbe-Buglé region of Panama. The relationship between this village and EWB at WSU began in 2016 when WSU alumna Destry Seiler began living in the village as a Peace Corps volunteer hoping to help solve the community’s water security needs.

A picture of Comarca Ngäbe-Buglé region photo taken from a small village in Panama

A view of the Comarca Ngäbe-Buglé taken from the village in Panama.

During the rainy season in this village, approximately 20 households have access to water through a two-inch PVC pipe that operates by gravity. It runs approximately 1.5 kilometers through the jungle from a spring source higher in the mountain to small hose spickets located close to the homes on the distribution line. The other ~80 households do not have access to the distribution line and walk to the closest river or creek up to five times a day to find water. However, during the dry season, most spring sources dry up, leaving all households in the community to walk to the diminished supply of rivers to find their water.

Water line supplying 20 village homes with water during the rainy season

A view of the water line currently serving ~20 homes in the village during the rainy season.

The village initially requested assistance from the Peace Corps in order to find a year-round source of clean water. But, after living in the village for 1.5 years, Ms. Seiler could not locate spring sources that both survived through the dry season and could also reach the homes in need through a gravity fed system.

Then Ms. Seiler began thinking of groundwater as a possible new water source for the community. Unfortunately, groundwater data for the Comarca Ngäbe-Buglé was not available from the local government agency. So she decided to reach out to WSU professor, Dr. Karl Olsen, to ask for assistance with a groundwater research project, and the EWB club was formed.

The club visited the village for the first time along with Ms. Seiler and faculty mentor Dr. Karl Olsen in August 2018 to do an initial survey of water use and needs, as well as to create a first-ever map of the area. EWB will return to Panama this June 2019 to implement a solar-powered water pump requested by a section of the community to deliver water from a spring source to approximately 20 homes on the nearest ridgeline. The club will also install latrines in a nearby community. They will continue the groundwater survey of the area through more extensive mapping and perform a more advanced analysis with the support of a local hydrologic company.

EWB members and WSU students next to the village sign

EWB members and WSU students Patrick Roubicaud, Kristy Watson, Destry Seiler, Perri Piller, Rene McMinn, and Kevin Allen during their visit to Panama, August 2018.

The team will use a METER-donated ATMOS 41 weather station along with a ZL6 data logger and ZENTRA Cloud software to assist in the data collection necessary to begin mapping groundwater in the area. The weather station will record precipitation, solar radiation, vapor pressure, temperature, wind, and relative humidity data that will enable EWB to begin to quantify environmental conditions and available water supply. When combined with streamflow data from rivers in the area, groundwater availability can also begin to be estimated. Because of ZENTRA Cloud, EWB will be able to view this information near-real time as well as share it with the village to help guide their design decisions. EWB plans to install the ATMOS 41 at a nearby village school to ensure weather station security and to provide an opportunity for local students to learn about their surrounding environment in a way they have not been able to do before.

To learn more about the Panamanian village or the work EWB from WSU is doing, visit ewb.wsu.edu.

See weather sensor performance data for the ATMOS 41 weather station.

Explore which weather station is right for you.

Download the “Researcher’s complete guide to soil moisture”—>

Download the “Researcher’s complete guide to water potential”—>

Soil Moisture 101: Need-to-Know Basics

Harness the power of soil moisture

Researchers measure evapotranspiration and precipitation to understand the fate of water—how much moisture is deposited, used, and leaving the system. But if you only measure withdrawals and deposits, you’re missing out on water that is (or is not) available in the soil moisture savings account. Soil moisture is a powerful tool you can use to predict how much water is available to plants, if water will move, and where it’s going to go.

Trees fallen in a forest and being supported by other trees

Soil moisture 101 explores soil water content vs. soil water potential

What you need to know

Soil moisture is more than just knowing the amount of water in soil. Learn basic principles you need to know before deciding how to measure it. In this 20-minute webinar, discover:

  • Why soil moisture is more than just an amount
  • Water content: what it is, how it’s measured, and why you need it
  • Water potential: what it is, how it’s different from water content, and why you need it
  • Whether you should use soil moisture sensors, water potential sensors, or both
  • Which sensors measure each type of parameter

Watch the webinar

Learn more

Download the “Complete guide to irrigation management”—>

Soil Moisture 201: Moisture Release Curves—Revealed

Download the “Researcher’s complete guide to soil moisture”—>

Download the “Researcher’s complete guide to water potential”—>

Just released: ATMOS 41 comparison testing data

Climate parameters such as precipitation, air temperature, and wind speed can change considerably across short distances in the natural environment. However, most weather observations either sacrifice spatial resolution for scientific accuracy or research-grade accuracy for spatial resolution.

Researcher setting up an ATMOS 41 all-in-one weather station

ATMOS 41 all-in-one weather station

The ATMOS 41 represents an optimization of both. It was carefully engineered to maximize accuracy at a price point that allows for spatially distributed observations. Additionally, because many researchers need to avoid frequent maintenance and long setup times, the ATMOS 41 weather station was designed to reduce complexity and withstand long-term deployment in harsh environments. To eliminate breakage, it contains no moving parts, and it only requires recalibration every two years. Since all 14 measurements are combined in a single unit, it can be deployed quickly and with almost no effort. Its only requirement is to be mounted and leveled on top of a pole with an unobstructed view of the sky.

Comparison testing and sensor-to-sensor variability data

METER released the ATMOS 41 in January 2017 after extensive development and testing with partnerships across the world, in Africa, Europe, and the US. We performed comparison testing with high-quality, research-grade non-METER sensors and conducted time-series testing for sensor-to-sensor variability.

See weather sensor performance data for the ATMOS 41 weather station.

Explore which weather station is right for you.

Download the “Researcher’s complete guide to soil moisture”—>

Download the “Researcher’s complete guide to water potential”—>

Data collection: 8 best practices to avoid costly surprises

Every researcher’s goal is to obtain usable field data for the entire duration of a study. A good data set is one a scientist can use to draw conclusions or learn something about the behavior of environmental factors in a particular application. However, as many researchers have painfully discovered, getting good data is not as simple as installing sensors, leaving them in the field, and returning to find an accurate record. Those who don’t plan ahead, check the data often, and troubleshoot regularly often come back to find unpleasant surprises such as unplugged data logger cables, soil moisture sensor cables damaged by rodents, or worse: that they don’t have enough data to interpret their results. Fortunately, most data collection mishaps are avoidable with quality equipment, some careful forethought, and a small amount of preparation.

ZL6 Data Logger in a wheat field

Before selecting a site, scientists should clearly define their goals for gathering data.

Make no mistake, it will cost you

Below are some common mistakes people make when designing a study that cost them time and money and may prevent their data from being usable.

  • Site characterization: Not enough is known about the site, its variability, or other influential environmental factors that guide data interpretation
  • Sensor location: Sensors are installed in a location that doesn’t address the goals of the study (i.e., in soils, both the geographic location of the sensors and the location in the soil profile must be applicable to the research question)
  • Sensor installation: Sensors are not installed correctly, causing inaccurate readings
  • Data collection: Sensors and logger are not protected, and data are not checked regularly to maintain a continuous and accurate data record
  • Data dissemination: Data cannot be understood or replicated by other scientists

When designing a study, use the following best practices to simplify data collection and avoid oversights that keep data from being usable and ultimately, publishable.

Read more…

Download the “Researcher’s complete guide to soil moisture”—>

Download the “Researcher’s complete guide to water potential”—>

Download the “Researcher’s complete guide to SDI-12″—>

5 ways site disturbance impacts your data—and what to do about it

Lies we tell ourselves about site disturbance

When it comes to measuring soil moisture, site disturbance is inevitable. We may placate ourselves with the idea that soil sensors will tell us something about soil water even if a large amount of soil at the site has been disturbed. Or we might think it doesn’t matter if soil properties are changed around the sensor because the needles are inserted into undisturbed soil.

Rolling farm fields

The key to reducing the impact of site disturbance on soil moisture data is to control the scale of the disturbance.

The fact is that site disturbance does matter, and there are ways to reduce its impact on soil moisture data. Below is an exploration of site disturbance and how researchers can adjust their installation techniques to fight uncertainty in their data.

Non-disturbance methods don’t measure up—yet

During a soil moisture sensor installation, it’s important to generate the least amount of soil disturbance possible in order to obtain a representative measurement. Non-disturbance methods do exist, such as satellite, ground-penetrating radar, and COSMOS. However, these methods face challenges that make them impractical as a single approach to water content. The satellite has a large footprint, but generally measures the top 5-10 cm of the soil, and the resolution and measurement frequency is low. Ground-penetrating radar has great resolution, but it’s expensive, and data interpretation is difficult when a lower boundary depth is unknown. COSMOS is a ground-based, non-invasive neutron method that measures continuously and reaches deeper than a satellite over an area up to 800 meters in diameter. But it is cost-prohibitive in many applications and sensitive to both vegetation and soil, so researchers have to separate the two signals. These methods aren’t yet ready to displace soil moisture sensors, but they work well when used in tandem with the ground truth data that soil moisture sensors can provide.

Read more

Get more info on applied environmental research in our

Download the “Researcher’s complete guide to soil moisture”—>

Download the “Researcher’s complete guide to water potential”—>

Hydrology 301: What a Hydraulic Conductivity Curve Tells You & More

Hydraulic conductivity is the ability of a porous medium (soil for instance) to transmit water in saturated or nearly saturated conditions. It’s dependent on several factors: size distribution, roughness, tortuosity, shape, and degree of interconnection of water-conducting pores. A hydraulic conductivity curve tells you, at a given water potential, the ability of the soil to conduct water.

Researcher measuring with the HYPROP balance

One factor that affects hydraulic conductivity is how strong the structure is in the soil you’re measuring.

For example, as the soil dries, what is the ability of water to go from the top of a sample [or soil layer in the field] to the bottom. These curves are used in modeling to illustrate or predict what will happen to water moving in a soil system during fluctuating moisture conditions. Researchers can combine hydraulic conductivity data from two laboratory instruments, the KSAT and the HYPROP, to produce a full hydraulic conductivity curve (Figure 1).

Hydraulic conductivity curve

Figure 1. Example of hydraulic conductivity curves for three different soil types. The curves go from field saturation on the right to unsaturated hydraulic conductivity on the left.  They illustrate the difference between a well-structured clayey soil to a poorly structured clayey soil and the importance of structure to hydraulic conductivity especially at, or near, saturation.

In Hydrology 301, Leo Rivera, Research Scientist at METER, discusses hydraulic conductivity and the advantages and disadvantages of methods used to measure it.

Watch the webinar below.

 

Get more info on applied environmental research in our

Download the “Researcher’s complete guide to water potential”—>

Download the “Researcher’s complete guide to soil moisture”—>

IoT Technologies for Irrigation Water Management (Part 2)

Dr. Yossi Osroosh, Precision Ag Engineer in the Department of Biological Systems Engineering at Washington State University, continues (see part 1) to discuss the strengths and limitations of  IoT technologies for irrigation water management.

Grapes being irrigated

Informed irrigation decisions require real-time data from networks of soil and weather sensors at desired resolution and at a reasonable cost.

LoRaWAN (a vendor-managed solution see part 1) is ideal for monitoring applications where sensors need to send data only a couple of times per day with very high battery life at a very low cost. Cellular IoT, on the other hand, works best for agricultural applications where sensors are required to send data more frequently and irrigation valves need to be turned on/off. Low-Power Wide-Area Networking (LPWAN) technologies need gateways or base stations for functioning. The gateway uploads data to a cloud server through traditional cellular networks like 4G. Symphony Link has an architecture very similar to LoRaWAN with higher degree of reliability appropriate for industrial applications. The power budget of LTE Cat-M1 9 (a network operator LPWAN) is 30% higher per bit than technologies like SigFox or LoRaWAN, which means more expensive batteries are required. Some IoT technologies like LoRa and SigFox only support uplink suited for monitoring while cellular IoT allows for both monitoring and control. LTE-M is a better option for agricultural weather and soil moisture sensor applications where more data usage is expected.

NB-IoT is more popular in EU and China and LTE Cat-M1 in the U.S. and Japan. T-Mobile is planning to deploy NB-IoT network in the U.S. by mid-2018 following a pilot project in Las Vegas. Verizon and AT&T launched LTE Cat-M1 networks last year and their IoT-specific data plans are available for purchase. Verizon and AT&T IoT networks cover a much greater area than LoRa or Sigfox. An IoT device can be connected to AT&T’s network for close to $1.00 per month, and to Verizon’s for as low as $2 per month for 1MB of data. A typical sensor message generally falls into 10-200 bytes range. With the overhead associated with protocols to send the data to the cloud, this may reach to 1KB. This can be used as a general guide to determine how much data to buy from a network operator.

Fruit on a tree branch

Studies show there is a potential for over 50% water savings using sensor-based irrigation scheduling methods.

What the future holds

Many startup companies are currently focused on the software aspect of IoT, and their products lack sensor technology. The main problem they have is that developing good sensors is hard. Most of these companies will fail before the batteries of their sensors die. Few will survive or prevail in the very competitive IoT market. Larger companies that own sensor technologies are more concerned with the compatibility and interoperability of these IoT technologies and will be hesitant to adopt them until they have a clear picture. It is going to take time to see both IoT and accurate soil/plant sensors in one package in the market.  

With the rapid growth of IoT in other areas, there will be an opportunity to evaluate different IoT technologies before adopting them in agriculture. As a company, you may be forced to choose specific IoT technology. Growers and consultants should not worry about what solution is employed to transfer data from their field to the cloud and to their computers or smartphones, as long as quality data is collected and costs and services are reasonable. Currently, some companies are using traditional cellular networks. It is highly likely that they will finally switch to cellular IoT like LTE Cat-M1. This, however, may potentially increase the costs in some designs due to the higher cost of cellular IoT data plans.

IoT Technologies Chart

Download the “Researcher’s complete guide to water potential”—>

Download the “Researcher’s complete guide to soil moisture”—>

Download the “Researcher’s complete guide to SDI-12″—>

Get more info on applied environmental research in our

Learn more

Download the “Complete guide to irrigation management”—>

IoT Technologies for Irrigation Water Management

Dr. Yossi Osroosh, Precision Ag Engineer in the Department of Biological Systems Engineering at Washington State University, discusses where and why IoT fits into irrigation water management. In addition, he explores possible price, range, power, and infrastructure road blocks.

Wireless sensor networks and irrigation lines in a field

Wireless sensor networks collect detailed data on plants in areas of the field that behave differently.

Studies show there is a potential for water savings of over 50% with sensor-based irrigation scheduling methods. Informed irrigation decisions require real-time data from networks of soil and weather sensors at desired resolution and a reasonable cost. Wireless sensor networks can collect data on plants in a lot of detail in areas of the field that behave differently. The need for wireless sensors and actuators has led to the development of IoT (Internet of Things) solutions referred to as Low-Power Wide-Area Networking or LPWAN. IoT simply means wireless communication and connecting to some data management system for further analysis. LPWAN technologies are intended to connect low-cost, low-power sensors to cloud-based services. Today, there are a wide range of wireless and IoT connectivity solutions available raising the question of which LPWAN technology best suits the application?

IoT Irrigation Management Scenarios

The following are scenarios for implementing IoT:

  1. buying a sensor that is going to connect to a wireless network that you own (i.e., customer supplied like Wi-Fi, Bluetooth),
  2. buying the infrastructure or at least pieces of it to install onsite (i.e., vendor managed LPWAN such as LoRaWAN, Symphony Link), and
  3. relying on the infrastructure from a network operator LPWAN (e.g., LTE Cat-M1, NB-IOT, Sigfox, Ingenu, LoRWAN).

This is how cellular network operators or cellular IoT works. LPWAN technology fits well into agricultural settings where sensors need to send small data over a wide area while relying on batteries for many years. This distinguishes LPWAN from Bluetooth, ZigBee, or traditional cellular networks with limited range and higher power requirements. However, like any emerging technology, certain limitations still exist with LPWAN.

Apple orchard

Individual weather and soil moisture sensor subscription fees in cellular IoT may add up and make it very expensive where many sensors are needed.

IoT Strengths and Limitations

The average data rate in cellular IoT can be 20 times faster than LoRa or Symphony Link, making it ideal for applications that require higher data rates. LTE Cat-M1 (aka LTE-M), for example, is like a Ferrari in terms of speed compared to other IoT technologies. At the same time, sensor data usage is the most important driver of the cost in using cellular IoT. Individual sensor subscription fee in cellular IoT may add up and make it very expensive where many sensors are needed. This means using existing wireless technologies like traditional cellular or ZigBee to complement LPWAN. One-to-many architecture is a common approach with respect to wireless communication and can help save the most money. Existing wireless technologies like Bluetooth LE, WiFi or ZigBee can be exploited to collect in-field data. In this case, data could be transmitted in-and-out of the field through existing communication infrastructure like a traditional cellular network (e.g., 3G, 4G) or LAN. Alternatively, private or public LPWAN solutions such as LoRaWAN gateways or cellular IoT can be used to push data to the cloud. Combination of Bluetooth, radio or WiFi with cellular IoT means you will have fewer bills to pay. It is anticipated that, with more integrations, the IoT market will mature, and costs will drop further.

Many of LPWAN technologies currently have a very limited network coverage in the U.S. LTE Cat-M1 by far has the largest coverage. Ingenu, which is a legacy technology, Sigfox and NB-IOT have very limited U.S. coverage. Some private companies are currently using subscription-free, crowd-funded LoRaWAN networks to provide service to U.S. growers: however, with a very limited network footprint. Currently, cellular IoT does not perform well in rural areas without strong cellular data coverage.

In two weeks: Dr. Osroosh continues to discuss IoT strengths and limitations in part 2.

Download the “Researcher’s complete guide to soil moisture”—>

Get more info on applied environmental research in our