Scientists often misunderstand average relative humidity (see part I). In fact, it’s not uncommon to encounter average relative humidity being misused in scientific literature. This week, learn which measurement should be used instead.
Humid conditions in a pine forest.
What is Wrong with Average Relative Humidity?
We often use average values to illustrate the behavior of parameters over time. One of the most common is air temperature, where we effectively graph average half-hourly temperature across a day or daily temperature across a year to show important details about the environment. But, consider what average relative humidity would look like.
As noted above, a general rule, though not consistent everywhere, is that the temperature at night cools down to the point where the air is saturated and the relative humidity is 100% (1). During the day, depending on the climate and weather, the saturated vapor pressure may increase roughly two to five times ea and relative humidity would be between 0.2 to 0.5. If we calculated an average for the day, it would most likely be between 0.6 and 0.75, no matter what environment was being measured. Of course, if it were raining or in the winter with low incoming radiation, this would be higher. Still, it is easy to see that an average relative humidity does not do much to define meteorological conditions.
The title of this chart is misleading because they were not averaging across the day, but only daily at noon. Image: Britannica.com/
What Should We Use Instead?
The measurement that should be reported is vapor pressure. Not only is it independent of temperature, but it can also be effectively averaged over time to show ecosystem behavior. However, this value will not be helpful to scientists who are identifying the pull generated by the atmosphere for water vapor in the plant or soil. This quantity is called vapor deficit and is calculated by taking the difference between the saturation vapor pressure and ea.
We sense water deficit in the atmosphere through our skin.
As humans, we intuitively sense the deficit when we feel that the atmosphere is dry through drying of our lips or our skin. The same is true for plants. The dry atmosphere will exert a higher pull on the water, pulling it out through the leaves. The higher the difference between the vapor pressure and the saturation vapor pressure, the more pull for water. Although sometimes reported in literature, the most common use for vapor pressure is as a standard input to evapotranspiration models like FAO56 or Penman-Monteith.
See weather sensor performance data for the ATMOS 41 weather station.
Relative humidity is one of the most widely reported weather parameters and is familiar to most people.
Scientists sometimes misunderstand relative humidity.
Still, it is not uncommon to encounter it being misused. Here are two examples:
My sister recently stated that her son was experiencing 45℃ and 100% humidity while walking around during the day in the Philippines.
In scientific literature, I often find figures displaying daily average relative humidity over a period of weeks or months.
Both of these examples show a misunderstanding of what relative humidity is and how it can be used.
What is relative humidity?
Relative humidity (hr) is the ratio of the vapor pressure (ea) in the air over how much vapor pressure there could be if the air were saturated at that air temperature (saturated vapor pressure, es(Ta)).
While vapor pressure is a reasonably conservative quantity, meaning it doesn’t change drastically with time (i.e.hours), es(Ta) is solely tied to temperature, shown by the empirical Tetens equation:
where Ta is air temperature, and b =17.502 and c = 240.97℃ (constants). As the equation shows, saturated vapor pressure is only a function of temperature, so relative humidity in natural conditions will simply show a sinusoidal pattern that is inverse to air temperature.
When humidity is higher, the vapor concentration difference is smaller so we lose less water, reducing our ability to cool.
Why do we estimate it poorly?
When temperatures are elevated above our comfort zone, we begin to feel hot. Our bodies, which are adept at keeping us cool, evaporate water from our skin to return us to a comfortable skin temperature. When humidity is higher, the vapor concentration difference is smaller so we lose less water, thus reducing our ability to cool. In an attempt to balance the humidity, our body moistens the skin surface with sweat, leaving us feeling damp and sticky. This makes us feel like the air is nearly saturated, but in reality, the higher humidity has simply limited our ability to cool ourselves.
It is a relatively simple thing to convince ourselves that daytime humidities are never 100% unless it’s raining. We know that daytime temperatures are almost always higher than nighttime, due to solar radiation. And, we are familiar with dew that forms on surfaces as nighttime temperatures cool to the point that they begin to condense water out of the air (dew point temperature). If we assume that the vapor pressure of the air (ea) is the same as the saturation vapor pressure when the dew began to form (nighttime low temperature), then any air temperature throughout the day (Ta, which we assume would be higher) generates a saturation vapor pressure (es(Ta)) that is higher than ea and thus, relative humidity would be less than 1.
So, what about my nephew in the Philippines? Right now, a typical low temperature is 24℃ with a high of 34℃ (when it’s not raining). Under that scenario, the relative humidity, although it would feel quite high, would only be around 56% at midday.
Next Week: Learn what’s wrong with using average relative humidity in scientific papers and what measurement should be used instead.
With very little recharge and irrigation comprising 75% of groundwater use, natural water resources in the United Arab Emirates region are disappearing fast (see part I). Wafa Al Yamani and her PhD advisor, Dr. Brent Clothier, are investigating usingtreated sewage effluent and groundwater for irrigating the desert forests along UAE motorways.
Abu Dhabi
Infiltrometers Predict Dripper Behavior:
Wafa and her team used what they call, “the Ankeny twin head method” for site evaluation with infiltrometers, and they’ve been able to use it to predict dripper behavior. They begin with the head at -60 mm, do a series of measurements to measure steady infiltration, and repeat the process at -5 mm. They use those measurements to solve Woodings equation which has two unknowns: saturated hydraulic conductivity and capillarity. Dr. Clothier says, “We’ve done it at two heads, and we can use Woodings equation to solve for the slope of the exponential conductivity curve. Hence, I can predict with time, the movement of the wetting front away from the dripper. That’s been very useful to work out what volume of soil we’re wetting. It tells us if we should have one or two drippers. In this forest, we think we can get away with two drippers because if they irrigate for two hours, the radius of the wet front will be 20 cm, and the depth will be about 40 cm, which is a sufficient volume of water for the tree roots.” Dr. Clothier says they also constructed a small dyke around the drippers so they could contain the water inside the drip zone in case of hydrophobicity or uneven sand.
Wafa on site, using the twin head method.
Treated Effluent Resolves Salinity Issues
Historically, the UAE pumped their sewage effluent into the Arabian Gulf, but recently, there has been a shift toward seeing it as a valuable water resource, not only for the desert forest, but for irrigation of fruit crops and date palms. Dr. Clothier says, “Once we started getting our results we realized we were irrigating with groundwater that had high salinity, about 10 dS/m, and that treated sewage effluent had only 0.5 dS/m. This was an important discovery because with the high salinity groundwater, you have to over-irrigate to maintain a salt leaching fraction. However, when we apply the treated sewage effluent, we immediately see a response in the trees because it has 1/20th of the salt load.”
Dr. Clothier says that there is one problem with the trees responding so well to the sewage effluent. The treated sewage effluent makes the trees grow taller and faster, so if the ecosystem service you want from the desert forest is that they’re 4-6 meters high, it becomes an issue. He adds,”This is actually a positive problem, because we can now induce deficit irrigation, thereby creating a larger resource of treated sewage effluent in order to irrigate far more forests.”
Researchers irrigated with water from these tanks which stored groundwater and treated sewage effluent.
What’s The Future?
Dr. Clothier says they started with a pilot study in the UAE in 2014, and it was so successful that they ended up with two fully-funded four-year projects, one on treated sewage effluent, and one investigating the irrigation of date palms. He says they have another 3 ½ years of work in the UAE on these projects, and in the end, their goal is to develop a model for forestry irrigation and soil salinity management, along with developing capability for the measurement and modeling of irrigation impacts on sustainable forestry. They have recently developed a prototype of a computerized decision support tool for irrigation which will provide sustainable irrigation advice to optimize water use. The support tool takes into account the need to maintain salt leaching, and actual irrigation records can be entered to enable real-time use.
The hyper-arid United Arab Emirates (UAE) has a rapidly dwindling supply of groundwater, and that water is becoming increasingly saline.
Dubai is situated on the coast of the UAE.
With very little recharge and irrigation comprising 75% of groundwater use, natural water resources in this region are disappearing fast. PhD candidate Wafa Al Yamani works for the Environmental Agency of Abu Dhabi, which has contracted with Plant and Food Research in New Zealand to investigate using treated sewage effluent and groundwater for irrigating the desert forests along their motorways.
Sidr trees in the UAE forest.
The Desert Forests
The UAE desalinates all the water for their cities, so the tertiary treated sewage effluent from these cities could be a viable resource, replacing some groundwater for irrigation of the desert forests. These forests perform a wide range of ecosystem services from sand stabilization along all UAE motorways to harboring a great deal of biodiversity. There is also a cultural association with the forests. The original ruler of the UAE, Sheikh Zayed, embarked on a program in the 1970s of “greening the desert,” so the people see the desert forests as a legacy of their founder.
Infiltrometers were used to examine how the drip irrigation system worked.
Measuring Water Use:
Wafa and her PhD advisor, Dr. Brent Clothier, had a goal to minimize groundwater use and maximize value by quantifying the irrigation needs of the UAE’s five most important desert-forestry species. They also wanted to determine the impact of treated sewage effluent on forest growth and health. They used infiltrometers to examine how the drip irrigation system worked. Dr. Clothier says, “These soils have hydraulic conductivities of between 2 and 5 meters an hour. They are highly permeable desert sands. We can find out how wide the bulb (the wetted area underneath an irrigation dripper) is and how deep the water will travel by using an infiltrometer to look at the hydraulic properties of the soil.” Dr. Clothier has also developed software to predict water movement radially, with depth and with the time that the drippers are on. He comments, “We’ve now got a setup of two drippers per tree, and we will use that in the future for modeling how the trees are taking up water from the root zone.”
Researchers built dykes of 20 cm to stop surface redistribution of dripper water.
The scientists used a heat pulse method to measure tree water-use by comparing sap flow with evaporative demand (ETo). They used Time Domain Reflectometry (TDR) to measure soil water content, and they have developed a “light stick” using light sensors to detect the shadow area of the trees to measure trees’ leaf area in order to predict the crop factor that will enable prediction of tree water-use from ETo.
Next week:Find out how Wafa and her team use infiltrometers to predict dripper behavior and how the treated effluent resolves salinity issues.
Due to controversy over the growing number of high capacity wells in the Wisconsin Central Sands, University of Wisconsin PhD student, Mallika Nocco, is researching how agricultural land use, irrigation, and climate change impact the region’s water-energy balance (see part I). This week, read about her challenges installing lysimeters below the root zone, how she used a GPS system that can find the lysimeters within a half-inch of accuracy, and her surprising conclusions.
This relatively small ecological region has gone from 60 high capacity wells in 1960 to over 2,500 today.
Below the Root Zone
Nocco says getting the lysimeters below the root zone was a major challenge. “We tried a couple of things, but we settled on installing all the lysimeters with an 18-inch auger that would drill a hole slightly bigger than the whole lysimeter. We dug an 80 cm trench to the top of the monolith zone. Then, we pounded the drain gauge divergence control tube to 1.4 m to obtain an intact monolith, wherever it was possible to do so. We also stratified soil moisture sensors at 10, 20, 40, and 80 cm. We used heavy equipment to slowly lift out the monolith, dig out the soil below, and place it back in, keeping track of all of the different soil horizons, and backfilled as close to the bulk density as we could.”
Passive capillary lysimeter installation
Finding the Lysimeters with GPS
Typically, scientists bury lysimeters close to the edge of the field so they are easy to locate, but Nocco was concerned that they would prejudice their data due to the donut effect of center pivot irrigation: more irrigation hits the center of the field with less irrigation toward the edges. She comments, ”When I installed the first ten lysimeters, I had not yet come up with a way to find everything. Those instruments are all about 15 meters from the field edge so that I could triangulate measurements and find them during cultivation. But then I met an extension scientist at the university who had access to an RTK GPS system, which can locate instrumentation within a half-inch of accuracy. With his help and training, we were able to install the rest of the lysimeters at more random spots throughout the field.”
Nocco was concerned that they would prejudice their data due to the donut effect of center pivot irrigation.
Surprising Conclusions
Nocco says that ET and differences in crop physiology do not explain or account for all of the variability that she saw in groundwater recharge. Her team did a particle size analysis on the soils adjacent to the lysimeters, and she comments, “We thought that the greater the relative sand content in the soils, the more recharge we would have seen, but what we are seeing is the opposite. The particle size analysis reveals a negative linear correlation between potential recharge and sand content. The more silt there is in these lysimeters, the more volume of recharge. What I’m curious about now is if we’re seeing a greater volume of recharge in the siltier spots from flux convergence. I’m trying to obtain the time series data from the pressure transducers to see if maybe the sandier areas had less potential recharge, but perhaps drained faster. I have seen a correlation between antecedent soil moisture content and particle size (with no correlation based on crop type). So it also looks like the siltier soils are holding more water when the rain comes through.”
What’s Next?
Eventually, Nocco plans to use field-generated estimates of groundwater recharge and ET to parameterize and validate a dynamic, agroecosystem model, Agro-IBIS, simulating hydrological responses to climate and land use changes over the past 60 years. Nocco will then share the water-energy budgets and water quantity/climate simulations with stakeholders in the Wisconsin Central Sands area.
Due to controversy over the growing number of high capacity wells in the Wisconsin Central Sands, University of Wisconsin PhD student, Mallika Nocco, is researching how agricultural land use, irrigation, and climate change impact the region’s water-energy balance. She and her team have uncovered some surprising results.
A class 1 trout stream has sufficient natural reproduction to sustain populations of wild trout at or near carry capacity.
Water Use Debate
There are class 1 trout streams in the Central Sands region, and some people worry that the increasing number of high capacity wells used for agriculture will reduce the water levels in those streams. “Lake Huron has lost about 11 feet of water since 2000,” says one resident of the Central Sands area, “and water levels are continuing to drop.” In 2008, the small well he used to pump drinking water went dry, and he blames the high capacity wells.” (Aljazeera America) On the other side of the debate, agriculture irrigated by these wells is extremely valuable to the state, and growers have taken quite a bit of time to understand the water cycle and their role in it. You can read about their water management goals and accomplishments here.
Updating Former Research
Irrigated agriculture wasn’t prevalent or profitable in the Wisconsin Central Sands until groundwater irrigation with high capacity wells became feasible in the 1950s. Since then, this relatively small ecological region has gone from 60 high capacity wells in 1960 to over 2,500 today.
Mallika Nocco is studying potential groundwater recharge from irrigated cropping systems that use the wells, hoping to understand if the irrigation water is lost or returned to the groundwater. She says, “Until now, we’ve been relying on models validated by two lysimeters in the 1970s. Champ Tanner (one of the fathers of environmental biophysics) designed the weighing lysimeters, and they were very accurate, but we wanted to do a larger scale study with multiple crops to get a handle on interannual variability and to improve our understanding of recharge in the region so we can do a better job of managing irrigation and groundwater.”
Lysimeter installation into actively managed fields presented challenges that the research team had to overcome.
Measuring Recharge
Nocco used twenty-five drain gauge lysimeters to capture vadose zone flux under potato and maize cropping systems. She monitored soil water (and temperature) flux by stratifying water content sensors from the soil surface to a depth of 1.4 meters. She also estimated evapotranspiration (ET) using a porometer to measure stomatal conductance, in addition to obtaining micrometeorology, leaf area index, and gas exchange measurements.
Nocco and her team had to put their sensors in to avoid cultivation, so they extended the drain gauge PVC that comes up to the soil surface and removed it any time there was major fieldwork, whether it was tillage or planting, so that the area over the lysimeter got the same treatment as the rest of the agricultural fields.
Below the Root Zone
Nocco says getting the lysimeters below the root zone was a challenge. Next week, read about how she solved that challenge, how she used a GPS system to find the lysimeters within a half-inch of accuracy, and about her surprising conclusions.
Dr. Lauren Hallett, researcher at the University of California, Berkeley, recently conducted a study testing the importance of compensatory dynamics on forage stability in an experimental field setting where she manipulated rainfall availability and species interactions. She wanted to understand how climate variability affected patterns of species tradeoff in grasslands over time and how those tradeoffs affected the stability of things like forage production across changing rainfall conditions.
Species tradeoffs could help mitigate the negative effects of climate variability on overall forage production.
Species Tradeoff
A key mechanism that can lead to stability in forage production is compensatory dynamics, in which the responses of different species to climate fluctuations result in tradeoffs between functional groups over time. These tradeoffs could help mitigate the negative effects of climate variability on overall forage production. Dr. Hallett comments, “In California grasslands, there’s a pattern that is part of rangeland dogma, that in dry years you have more forbs, and in wet years you have more grasses. I wondered if you could manage the system so that both forbs and grasses are present in the seed bank, able to respond to climate. This would perhaps buffer community properties, like soil cover for erosion control and forage production in terms of biomass, from the effects of climate variability.”
In areas experiencing moderate grazing, there was a strong species tradeoff between grasses and forbs.
Manipulating Species Composition
Dr. Hallett capitalized on the pre-existing grazing manipulation that her lab had done over the previous four years. The grazing she replicated for this study was experimentally controlled, making it easier to ensure consistency. She built rainout shelters where she collected the water and applied it to dry versus wet plots. She also manipulated species composition, allowing only grasses, only forbs, or a mix of the two. These treatments allowed her to study changes in cover and biomass.
Hallett used soil moisture probes and data loggers to characterize the treatment effects of this experiment and to parameterize models that predict rangeland response to climate change. She says, “I wanted to verify that my rainfall treatments were getting a really strong soil moisture dynamic, and I found the shelters and the irrigation worked really well.” Along with above-ground vegetation, she collected soil cores and looked at nutrient differences in conjunction with soil moisture. Since her field site is located within the Sierra Foothills Research and Extension Center, Dr. Hallett was able to rely on precipitation data that was already measured on-site.
Results
Dr. Hallett found that in areas experiencing moderate grazing, there was a strong species tradeoff between grasses and forbs. She comments, “I had a seedbank that had both functional groups represented, and those tradeoffs did a lot to stabilize cover over time.”
When Dr. Hallett replicated the experiment in an area that had a history of low grazing, she found that the proportion of forbs wasn’t as high in the seedbank. As a consequence, there was a major loss of cover in the dry plots. She explains, “When the grass died, there weren’t many forbs to replace it, and you ended up with a lot of bare ground. The areas that were lightly grazed had more litter, so initially, the soil moisture was okay, but as the season progressed into a dry condition and the litter decomposed, there wasn’t enough new vegetation to stabilize the soil.” As a result, Dr. Hallett thinks in low-grazed areas it’s important to have an intermediate level of litter. She says, “You need enough litter to increase soil moisture, but not so much that it would suppress germination of the forbs because as the season progresses and gets really dry, if you don’t have forbs in the system, you lose a lot of ground cover.”
Surprises Lead to A New Study
Dr. Hallett was surprised that within her three treatments there seemed to be differences in when the functional groups were drying down the soil. This inspired new questions, leading her to use her dissertation data to generate a larger grant through the USDA. Her new study will perform extensive rainfall manipulations to measure the effects of early-season versus late-season dryout, and vary species within those parameters. She says, “One of the reasons you have grass years versus forb years is the timing of rainfall. For instance, if you have a really dry fall, you tend to have more forbs because their seedlings are more drought resistant. Conversely, if you have a wet fall, you tend to see more grasses because you have continual germination throughout the season. So, the timing of rainfall matters in terms of what species are in the system. We are going to look at the coupling between the species that gets selected for the fall versus what would be able to grow well in the spring, and we will be studying how that affects a whole range of things such as ground cover, above-ground production for forage, below-ground investment of different functional groups, and how these things might relate to nutrient cycling and carbon storage.”
You can read more about Dr. Hallett’s rangeland research and her current projects here.
In the conclusion to last week’s blog, Mark Blonquist, chief scientist at Apogee Instruments and air temperature measurement expert, explains the complexities of some proposed solutions to the problems that challenge accurate air temperature measurement.
An aspirated radiation shield manufactured by Apogee Instruments in Logan, Utah. Multiple models of passive and active shields are available from several manufacturers.
Solution: Passive Radiation Shield
In addition to an accurate sensor, accurate air temperature measurement requires proper shielding and ventilation of the sensor. Passive shields do not require power, making them simple and low-cost, but they warm above air temperature in low wind or high solar radiation. Warming is increased when there is snow on the ground due to increased solar radiation load from higher albedo and increased reflected solar radiation. Errors as high as 10 degrees C have been reported in passive shields over snow (Genthon et al., 2011; Huwald et al., 2009). The figure below shows the differences in error for the two conditions.
Corrections for Passive Shields
Equations to correct air temperature measurements in passive shields have been proposed, but often require measurement of wind speed and solar radiation, and are applicable to a specific shield design. Corrections that don’t require additional meteorological measurements have also been proposed, such as air temperature adjustment based on the difference between air temperature and interior plate temperature differences. Others have suggested modifying traditional multi-plate passive shields to include a small fan that can be operated under specific conditions, but using natural aspiration when wind speeds are above an established threshold.
Solution: Active Shields
Warming of air temperature sensors above actual air temperature is minimized with active shields, which are more accurate than passive shields under conditions of high solar radiation load or low wind, but power is required for the fan. The power requirement for active shields ranges from one to six watts (80-500 mA). For solar-powered weather stations, this can be a major fraction of power usage for the entire station and has typically required a large solar panel and large battery. Power requirement and cost are disadvantages of active shields (Table 3), and they have led to the use of less accurate passive shields on many solar-powered stations.
Also, the fan motor can heat air as it passes by. Active shields should be constructed to avoid recirculation of heated air back into the shield. There is no reference standard for the elimination of radiation-induced temperature increase of a sensor for air temperature measurement, but well-designed active shields minimize this effect.
Table 3: Advantages and disadvantages of passive (naturally-aspirated) and active (fan-aspirated) radiation shields.
There is no reference standard for the elimination of radiation-induced temperature increase of a sensor for air temperature measurement, but well-designed active shields minimize this effect. Radiation-induced temperature increase was analyzed in long-term experiments over snow and grass surfaces by comparing temperature measurements from three models of active radiation shields (the same temperature sensor was used in all shields and were matched before deployment). Continuous measurements for one year indicated that mean differences among shield models were less than 0.1 C over grass and less than 0.3 C over snow. Differences increased with increasing solar radiation, particularly during winter months when there was snow (high reflectivity) on the ground.
Air Temperature: a Complex Measurement
The properties of materials and nearly all biological, chemical, and physical processes are temperature dependent. As a result, air temperature is perhaps the most widely measured environmental variable. Accurate air temperature measurement is essential for weather monitoring and climate research worldwide. The road to accuracy is complex, however, and will continue to be challenging given the trade-off between accuracy and power consumption with passive and active shields.
Get more information on applied environmental research in our
See weather sensor performance data for the ATMOS 41 weather station.
Understanding the amount of drainage that comes out of the bottom of the root zone and infiltrates into groundwater recharge is a very difficult measurement to do well. Drain gauges do a good job of it but on a small scale. Large lysimeters do an even better job, but are extremely expensive and complex. There is an economical alternative, however, called the salt balance approach to measuring drainage.
Soil profile underneath canola
The Salt Balance Approach
Since the majority of non-fertilizer salts in the soil solution don’t get taken up by plants, this salt can be used in soil as a conservative tracer. This means that whatever salt is applied to the soil through rainfall or irrigation water is either stored in the soil or leaches through the profile with the soil water, enabling us to use conservation of mass in our salt balance analysis. The electrical conductivity of water (ECw) is directly proportional to the salt concentration, so ECw can be used in place of salt concentration in this analysis. If you measure the EC of the water that’s applied to the soil, either through irrigation or precipitation, as well as the EC of the water that’s coming out of the bottom of your profile, then you can calculate what fraction of the applied water is being transpired by the plants, and what fraction is draining out of the bottom. This method is useful for measuring water balance at field sites.
To illustrate this concept, let’s work through a simple example. A particular field received 40 cm of water through precipitation and irrigation. The average ECw of the precipitation and irrigation water is 0.5 dS/m. Measurements of ECw draining from the soil profile below the root zone indicate an ECw of 2.0 dS/m. The drainage or leaching fraction can be easily calculated as :
The amount of water drained can also be easily calculated as:
Leaching fraction * applied water = 0.25 * 40 cm = 10 cm
Measuring Pore Water EC (ECw)
One challenge to this approach is the measurement of water electrical conductivity itself. Bulk EC is a relatively simple measurement, and several types of soil water content sensors measure it as a basic sensor output. However, the electrical conductivity of water, called pore water EC (ECw), is more complex. Pore water EC requires that it be either estimated from the bulk EC and soil water content or that a sample of pore water be pulled from the soil matrix and measured. When estimated, pore water EC can contain considerable error. In addition, removing a water sample and measuring the pore water EC is not easy.
To learn more about measuring EC, read our EC app guide.
During a recent semester at Washington State University, a film crew recorded all of the lectures given in the Environmental Biophysics course. The videos from each Environmental Biophysics lecture are posted here for your viewing and educational pleasure.
Dr. Khot and his postdoc, Dr. Jianfeng Zhou, are using leaf wetness sensors to determine if and how long water is present on cherry tree canopies after a rain event. Dr. Khot hopes that data from these sensors will help growers decide whether or not it makes sense to fly helicopters in order to dry the canopies.
Dr. John Selker, hydrologist at Oregon State University and one of the scientists behind the Trans African Hydro and Meteorological Observatory (TAHMO) project, gives his perspective on the future of sensor technology.
Michelle Newcomer, a PhD candidate at UC Berkeley, (previously at San Francisco State University), recently published research using rain gauges, soil moisture, and water potential sensors to determine if low impact design (LID) structures such as rain gardens and infiltration trenches are an effective means of infiltrating and storing rainwater in dry climates instead of letting it run off into the ocean.
Looking up at a tree canopy
Get more information on applied environmental research in our